

Ínnía -

Antoine Deleforge

Yannick Privat

Diagnostiquer l'acoustique d'une salle grâce au traitement du signal et à l'apprentissage automatique

Les Journées Techniques Acoustique et Vibrations Autun - 2024

Contexte

Le diagnostic de l'existant et le choix d'une solution finale : une approche fastidieuse !

Une réhabilitation acoustique optimale passe par un <u>diagnostic fiable de l'existant.</u>
Développement d'une approche inverse : un problème de physique non-linéaire

Est - il possible, en utilisant des « mesures » ponctuelles de champ sonore d'estimer précisément et automatiquement les paramètres acoustiques et géométriques d'une salle ?

□ La réponse impulsionnelle d'une salle contient toutes les informations (acoustique et géométrique) ayant impacté le champ sonore, **encore faut-il pouvoir les extraire!**

L'approche

Optimisation du diagnostic acoustique : nouvelle approche

Approche nouvelle novatrice : combinaison de traitement du signal et de méthodes d'apprentissage automatique et ce, spécifiquement au cas de l'acoustique des salles

Génération de bases de données annotées

- Première difficulté : avoir des bases de données de Ris mesurées spécifiquement annotées pour nos travaux
- Création de bases de données simulées « réalistes »
- Le modèle des sources-images : une réponse impulsionnelle peut être vue comme la superposition des réponses d'une infinité de sources virtuelles; un écho d'une RI correspond à une SI

Image method for efficiently simulating small-room acoustics, Allen and Berkley, JASA 1979

"The image solution of a rectangular enclosure rapid/y approaches an exact solution of the wave equation as the walls of the room become rigid."

RIs échantillonnées à 16 kHz et tronquées

Problématique

Pic ordre 1 S_1	'A'
Pic ordre 2 S_{21}	'B'.'C'
Pic ordre 1 Pic ordre 2	'B' 'C'.'D'
Pic ordre 3 Pic ordre 3	'A' 'B' 'A' 'D' 'C' 'A'
'A' 'B' 'C'	'D'

Réseaux de neurones : les avancées

Réseaux Neurones

Traitement Signal

Absorption moyenne de la salle : études de faisabilité et empirique

- Deux réseaux de neurones (MLP, CNN)
- CNN meilleur que le MLP
- **Constant** Résultats similaires à Eyring = f(TR, V, S)
- Test sur jeux de données réelles : bon accord excepté en basses fréquences

Erreur plus élevée si PSNR < 20 dB, Diffusion < 0.2, Absorption >0.3

C. Bastien, <u>A. Deleforge, C. Foy</u>, Mean Absorption Coefficient Estimation From Impulse Responses: Deep Learning vs. Sabine, e-Forum Acusticum, December 2020.

Absorption par bande d'octave : étude paramétrique (géométrie (dim. salle, pos. source et microphone), bruit résiduel, diffusion parois, erreur géométrique, taille et partie des RIs)

Approche temporelle via des réseaux de neurones

Réseaux Neurones

Traitement Signal

Les approches analytiques: les avancées

argmin (RIs – RIs(absorption, géométrie

Approche temps-fréquence : échogramme

□ Absorption par bande d'octave : identifier des fenêtres temporelles incluant un

$$\tau_{exact(inconnu)} = N(\tau_{mesure (erroné)}, écart-type)$$

- RANSAC améliore les estimations en exploitant les SI d'ordre 2
- Plus il y a de RIs dans la salle plus on réduit l'erreur et meilleure est la robustesse
- La géométrie doit être connue (temps d'arrivée « erronés » des pics)

Pas valable en basses fréquences (< 400Hz)

S. Dilungana, <u>A. Deleforge, C. Foy, S. Faisan</u>, Estimation jointe des profils d'absorption des parois d'une salle à partir de réponses impulsionnelles, CFA, France, 2022. S. Dilungana, <u>A. Deleforge, C. Foy, S. Faisan</u>, Geometry-Informed estimation of surface absorption profiles from impulses responses, Eusipco,, Serbia, 2022

Traitement Signal

Approche temporelle 1

Traitement Signal

Extension du modèle des sources-images : introduction d'un terme corrigeant l'impact de l'erreur géométrique sur l'atténuation géométrique et sur le filtre fractionnaire

Problème de minimisation du délai puis, des réponses temporelles des murs (descente de gradient)

Given Soutenance de Thèse de Stéphane Dilungana (4 septembre 2024)

Approche temporelle 2 (1/4)

Etape 2/6 : Obtention des normales aux parois de la salle (maximisation des orthogonalités) : la salle est orientée

T. Sprunck, K. Chahdi, C. Foy, E. Franck, A. Deleforge, Reconstruction de la forme d'une pièce par super-résolution à l'aide de réponses impulsionnelles, CFA, France, 2022. T. Sprunck, A. Deleforge, C. Foy, Y. Privat, Room Shape Reconstruction using Acoustic Super-Resolution (Poster), CANUM, France, 2022.

T. Sprunck, Y. Privat, C. Foy, A. Deleforge, Room Shape Reconstruction Using Acoustic Super-Resolution, ICA, Korea, 2022,

T. Sprunck, Y. Privat, C. Foy, A. Deleforge, Gridless 3D Recovery if Images Sources from Room Impulse Responses, IEEE Signal Processing Letters ,2022

T. Sprunck, A. Deleforge, Y. Privat, C. Foy, Fully Reversing the shoebox image source method: from impulse responses to room parameters, IEEE (soumis)

Traitement Signal

Approches Analytiques

 r_0 : distance source-microphone

□ Forme complexe : travaux sur une méthode d'optimisation de forme en cours

Traitement Signal

Merci de votre attention