

C. Piégay¹, F. Kast¹ ¹Cerema – Univ. Eiffel, UMRAE – Strasbourg, France

JOURNEES TECHNIQUES ACOUSTIQUE ET VIBRATIONS

Autun 05-06 juin 2024

Sommaire

- Soutien du PNR Lorraine au développement d'une filière de valorisation de la laine de mouton sur le territoire de la Région Grand Est afin d'apporter des réponses durables aux défis agricole, économique, énergétique et écologique
- Développement de nouveaux produits d'isolation thermique et acoustique à destination du bâtiment

αe

I. Contexte – Projet en étapes

Etape 1 : Projet DEFI-Laine

Projet de cooperation transfrontalier de 2017 à 2021

- Lavage de la laine en Belgique
- Fabrication de panneaux isolants par le CETELOR
- Mise en oeuvre dans 2 bâtiments municipaux du PNR

Utilisation de laine en vrac dans les combles et de panneaux pour les parois

Création de la société coopérative MOS-Laine avec unité de transformation de la laine locale pour la fabrication de feutres isolants

Etape 2 : meilleure définition du potentiel de développement d'isolants du bâtiment à base de laine de mouton Lancement d'un appel d'offre comprenant deux lots

 Σ

Réponse conjointe du Cerema (UMRAE – Pôle BioGéo) et du Centre d'Essais Textile LORrain (CETELOR)

Lot 1 – Cerema

Caractérisation et modélisation des performances acoustiques des panneaux d'isolants à base de laine de mouton à l'échelle matériau en laboratoire

Lot 2 – CETELOR

Développement et fabrication de différentes formulations de panneaux en laine de mouton 100% biosourcés

5

αe

III. Caractérisations expérimentales : absorption acoustique

Le coefficient d'absorption acoustique, α

α déterminé à partir de mesures de pression en deux positions par des microphones, selon la norme ISO 10534-2

III. Caractérisations expérimentales : résultats absorption acoustique

 Σ

de

Influence significative de la masse volumique

αe

III. Caractérisations expérimentales : dissipation au sein des matériaux

Cas général : [Biot 1956]

2 ondes dans la phase solide (compression et cisaillement)1 onde dans la phase fluide (compression)

Fluid phase: air Newtonian viscous and compressible fluid of viscosity μ

Solid phase:

- Impermeable
- •Skeleton assumption:
- Elastic skeleton : mechanical dissipation – skeleton elastic deformation (Biot 1956)
- O Rigid skeleton [Zwikker & Kosten, 1949]

$$f > f_{dec} = \frac{\sigma \phi^2}{2\pi \rho_a}$$

Dissipation

Viscous effect : fluid friction on the skeleton Dynamic density (ρ)

Thermal effect : heat transfert with the skeleton Bulk modulus (K)

Sound absorption coefficient $\alpha = f(\rho, K, e)$

Caractérisation et modélisation des performances acoustiques de laines de mouton pour des applications bâtiment

III. Caractérisations expérimentales : paramètres intrinsèques Micro 1 Micro 2 Terminaison igide $p = p_0 e^{j(\omega t - k_0 x)} + R p_0 e^{j(\omega t + k_0 x)}, x \le 0$ Micro 3 $p = A e^{j(\omega t - kx')} + B e^{j(\omega t + kx')}, 0 \le x \le e$ p incidente rigide Source Z_{C} p réfléchie Onde résultante Echantillon Fonction de transfert : $H_{32} = \frac{p_2}{r}$ $k = \omega \sqrt{\frac{\rho}{K}}$ $Zc = \omega \sqrt{\rho K}$ $k = f(H_{32}, k_0, s, l, R, e)$ $Z_c = f(Z_s, k, e)$ Paramètres intrinsèques $\alpha = f(\rho, K, e)$

III. Caractérisations expérimentales : paramètres de la structure poreuse [Johnson et al. 1987] [Champoux & Allard 1991] [Lafarge et al. 1997]

- Tortuosité α_{∞} \bigcirc
- Longueur caractéristique visqueuse Λ Ο
- Longueur caractéristique thermique Λ' Ο
- Perméabilité thermique statique k'_0

Caractérisation indirecte

A partir des mesures au tube de Kundt, on remonte aux paramètres grâce à des relations analytiques

$$\tilde{\rho}_{eq} = \frac{\alpha_{\infty}\rho_0}{\phi} \left[1 + \frac{\sigma\phi}{j\omega\rho_0\alpha_{\infty}} \left(1 + \frac{4j\alpha_{\infty}^2\eta\rho_0\omega}{\sigma^2\Lambda^2\phi^2} \right)^{1/2} \right] \longrightarrow \Lambda = \frac{\alpha_{\infty}}{\phi} \sqrt{\frac{2\eta\rho_0}{\omega\operatorname{Im}(\tilde{\rho}_{eq})\left(\alpha_{\infty}\rho_0/\phi - \operatorname{Re}(\tilde{\rho}_{eq})\right)}}$$

$$\tilde{\nu} = \frac{\gamma P_0/\phi}{\omega\operatorname{Im}(\tilde{\rho}_{eq})\left(\alpha_{\infty}\rho_0/\phi - \operatorname{Re}(\tilde{\rho}_{eq})\right)} = \frac{\gamma P_0/\phi}{\omega\operatorname{Im}(\tilde{\rho}_{eq})\left(\alpha_{\infty}\rho_0/\phi - \operatorname{Re}(\tilde{\rho}_{eq})\right)}$$

$$\tilde{K}_{eq} = \frac{\gamma P_0 \gamma \phi}{\gamma (\gamma - 1) \left(1 - j \frac{\phi \kappa}{k_0 C_p \rho_0 \omega} \left(1 + j \frac{4k_0^2 C_p \rho_0 \omega}{\kappa \Lambda'^2 \phi^2} \right)^{1/2} \right)^{-1}} \longrightarrow \Lambda' = 2 \sqrt{\frac{\kappa}{\rho_0 C_p \omega}} \left(- \operatorname{Im} \left(\left(\frac{\gamma P_0 - \phi \tilde{K}_{eq}}{\gamma P_0 - \gamma \phi \tilde{K}_{eq}} \right)^2 \right) \right)^{-1}}$$

$$[Olny et al., 2004]$$

$$k_0' = \frac{\phi \kappa}{C_p \rho_0 \omega} / \sqrt{-\operatorname{Re} \left(\left(\frac{\gamma P_0 - \phi \tilde{K}_{eq}}{\gamma P_0 - \gamma \phi \tilde{K}_{eq}} \right)^2 \right) \right)^{-1}}$$

 $\alpha = \frac{\phi}{\left(\operatorname{Re}(\tilde{\rho}_{-}) - \sqrt{\left(\operatorname{Im}(\tilde{\rho}_{-})\right)^{2} - \frac{\sigma^{2}}{\sigma^{2}}}\right)}$

de III. Caractérisations expérimentales : porosité ouverte

Masse volumique de la phase solide

[Leclaire et al. 2013]

 $\phi = \frac{V_{air}}{V_{tot}}$

Masse volumique de la phase solide et porosité

 ρ_a

Matériau	Masse volumique apparente moyenne (ρ _a) (kg.m ⁻³)	Masse volumique phase solide moyenne (ρ _s) (kg.m ⁻³)	Porosité (%)
PLA-1 à PLA-6	14 à 24	1 290	98,4 - 98,5
PBS-1 à PBS-6	11 à 20	1285	98,4 - 98,5
Laine mouton DEFI-Laine	20	1300	98,5
Laine verre I	16	2 315	99,4
Laine verre II	12	2 200	99,6

[Müssig 2010]

- ρ_s valeurs proches de la littérature : 1 300 kg.m⁻³
- ρ_s plus faibles que pour les fibres végétales (cellulose, lignin, pectin, etc.) de l'ordre de 1450 kg.m⁻³ et que pour les fibres de verre
- Porosité élevée

III. Caractérisations exprimentales : résistance au passage à l'air

La résistance à l'écoulement de l'air

(également appelée résistivité) d'un matériau, σ , caractérise la capacité d'un matériau à s'opposer à l'écoulement d'un fluide à travers sa structure. Norme ISO 9053-1:2018

Matériau	Masse volumique apparente moyenne (ρ _a) (kg.m ⁻³)	Résistivité expérimentale directe moyenne (σ) (N.m ⁻⁴ .s)	Valeurs très modestes pour le laines de mouton
PLA-1 à PLA-6	14 à 24	1 288 – 2 421	Laines de verre plus resistives
PBS-1 à PBS-6	11 à 20	1 258 - 2079	Corrélation entre résistivité e masse volumique apparente
Laine mouton DEFI- Laine	20	1 957± 144	
Laine verre l	16	6 137 ± 146	
Laine verre II	12	4 731 ± 320	

IV. Modélisation de l'absorption acoustique : validation du modèle JCAL

 \bullet

V. Exemple d'optimisation possible

MatériauPorositéRésistivité ϕ σ (N.m⁻⁴.s)PLA-60,9852421PLA_60,9773 100

de

Caractérisation et modélisation des performances acoustiques de laines de mouton pour des applications bâtiment

Merci pour votre attention

• Contact :

- clement.piegay@cerema.fr
- biogeo@cerema.fr
- <u>http://www.umrae.fr/</u>

Belle histoire de partenariat du Carnot Clim'Adapt

https://www.cerema.fr/fr/innovation-recherche/institutcarnot-clim-adapt/belle-histoire-partenariat-parc-naturelregional-lorraine

Comparaison avec DEFI-Laine + laines de verre du commerce

de