





Cabinet de management de l'acoustique ®

# Impact acoustique et vibratoire des clubs de fitness dans leur voisinage

JTAV 2023

**7 juin 2023** (15min + 5min questions)

Jérémy TURPIN, ingénieur acousticien

# L'histoire de ORFEA avec le fitness

#### 2. Découverte d'un nouveau paysage :

Réglementation et pratiques habituelles inadaptées

#### 1. Situation initiale:

Découverte à tâtons d'un problème « nouveau »



#### 3. Essais et erreurs

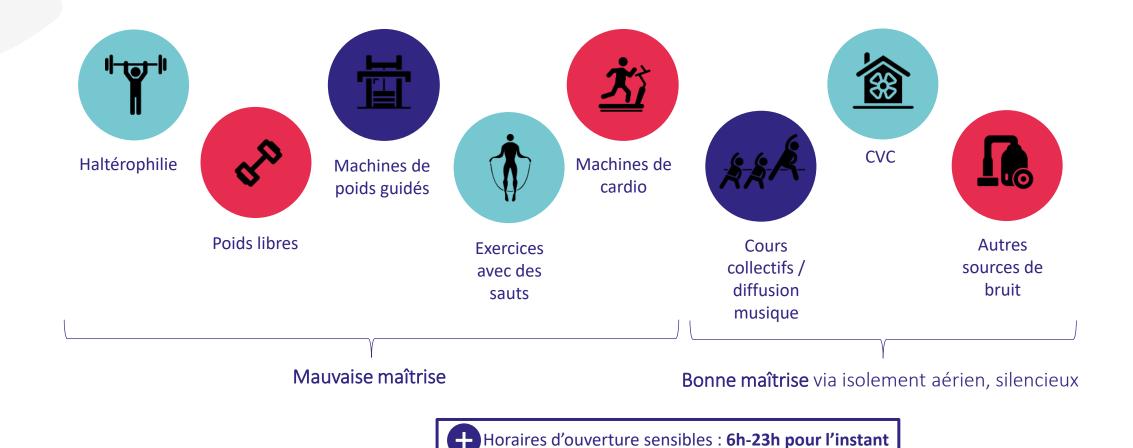
#### 5. Maîtrise et amélioration continue

- Proactivité et anticipation
- **Innovations**
- Formations de confrères
- Sensibilisations des parties prenantes

## Contexte

Démocratisation des salles de sport « libre-service », au plus proche des sportifs, notamment en centre-ville

Implantation dans des bâtiments existants non prévus pour ce type d'activité


Contexte réglementaire, cadre normatif, outils de mesures et de calculs insuffisants pour gérer ce « nouveau » risque.



+ de 200 clubs/an accompagnés



# Particularités des salles de sport



# Différentes zones = différents degrés d'agressivité









# Etat des lieux réglementaire

Le respect de la réglementation <u>ne suffit pas</u> et est parfois antinomique

| France                                                                                                                      | Espagne                                                                                                                                                     | Allemagne                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| INDICATEURS                                                                                                                 | INDICATEURS                                                                                                                                                 | INDICATEURS                                                                                                                                             |
| DnTA ≥ 58 dB                                                                                                                | DnTA ≥ 65 dB<br>D125 ≥ 50 dB                                                                                                                                | R'w ≥ 62 dB                                                                                                                                             |
| Emergences: +7 dB/+ 5 dB (+ correction)                                                                                     | Lkeq, 5sec < 30 dB                                                                                                                                          | LAFmax ≤ 35 dB<br>Lr ≤ 25 dB                                                                                                                            |
| L'ntw ≤ 58 dB                                                                                                               | LAeq10s < 40 dB(A)                                                                                                                                          | L'ntw ≤ 33 dB                                                                                                                                           |
| Barème relatif  Ne tient pas compte des basses (63 Hz)  Ne considère pas le caractère impulsif  Machine à chocs non adaptée | <ul> <li>Considère le caractère impulsif et les basses</li> <li>Contrôle systématique à l'ouverture du club</li> <li>Machine à chocs non adaptée</li> </ul> | <ul> <li>Considère le caractère impulsif et les basses</li> <li>Contrôle possible à l'ouverture du club</li> <li>Machine à chocs non adaptée</li> </ul> |

# Face à ce flou : accompagnement client

• Quel niveau de risque êtes-vous prêts à accepter ?



Sachant que tous les cas qui vont en procès sont généralement gagnés par les riverains.

• Quel niveau de maîtrise face à des solutions qui sont très onéreuses ?!

Image irréprochable?

Absence d'inconfort?

Optimisation économique ?

# Approche méthodologique empirique

Objectif : être au plus proche de l'inconfort perçu par le voisinage en curatif (investigation) et en conception (prédiction)



Démarche calculatoire complexe, coûteuse, peu fiable



#### Méthodologie empirique :

- Tests sur site (lâchers de poids standardisés)
- Multiplication des tests pour répétabilité et moyennage
- Table de correspondances par rapport à ce lâcher « nominal »
- Tests d'échantillons de solutions d'environ 1m<sup>2</sup>
- Approche par analyse de risque
- Retours d'expérience (+ de 200 clubs par an)









## Mesures in situ

#### Avantages :

- S'adapter au comportement de chaque bâtiment
- Identifier les chemins de transmissions / faiblesses
- Tests représentatifs de plusieurs solutions

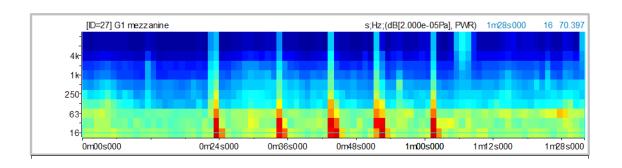
#### Mesures réalisées :

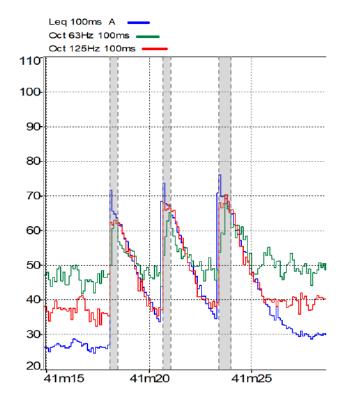
- Isolement aérien
- Lâchers d'haltères : réf 30kg depuis 50cm
- Lâchers de barres : réf 100kg deadlift
- Sonomètres + écoutes chez les riverains mitoyens (+ mouchards)
- Conditions défavorables (au plus proche du récepteur, près des poteaux...)



# Analyse des résultats

#### Indicateurs


LAeq, 100ms

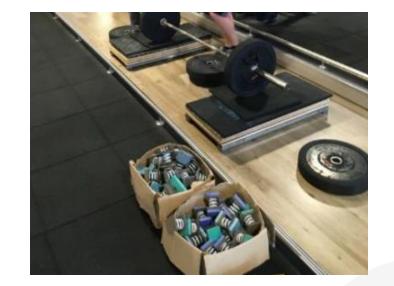

31Hz, 63Hz, 125Hz

Série de 5 lâchers -> moyenne arithmétique

## Calcul d'une émergence « instantanée » des impacts singuliers

| Réception<br>Mezzanine |                         | Niveaux par bande d'octave en dB |       |       |       |       |      |      | NIVEAU<br>GLOBAL |       |
|------------------------|-------------------------|----------------------------------|-------|-------|-------|-------|------|------|------------------|-------|
|                        |                         | 31,5 Hz                          | 63 Hz | 125Hz | 250Hz | 500Hz | 1kHz | 2kHz | 4kHz             | dB(A) |
| Bruit re               | ésiduel                 | 44,1                             | 45,0  | 35,6  | 31,8  | 27,9  | 22,5 | 18,2 | 11,8             | 30,4  |
| 30 kg                  | Bruit ambiant           | 76,7                             | 68,4  | 57,1  | 44,6  | 38,0  | 34,8 | 31,9 | 27,8             | 46,3  |
|                        | Emergence               | 32,5                             | 23,5  | 21,5  | 13,0  | 10,0  | 12,5 | 13,5 | 16,0             | 16,0  |
|                        | Emergence<br>admissible | /                                | /     | 7,0   | 7,0   | 5,0   | 5,0  | 5,0  | 5,0              | 5,0   |
|                        | Dépassement             | /                                | /     | 14,5  | 6,0   | 5,0   | 7,5  | 8,5  | 11,0             | 11,0  |






## Solutions



### Dans l'ordre de préférence

- 1. Organisationnel : déplacement activités, interdiction haltérophilie, etc.
- 2. Traitements à la source (bumpers, pads, etc.)
- 3. Traitements du sol avec revêtement ou plateformes sèches et humides, désolidarisation des structures (bois, métal)
- 4. Sensibilisation du personnel et des utilisateurs



## Tests de nouvelles solutions

Caractérisation des performances « relatives » de solutions (in-situ)

Acoustique et vibrations couplés

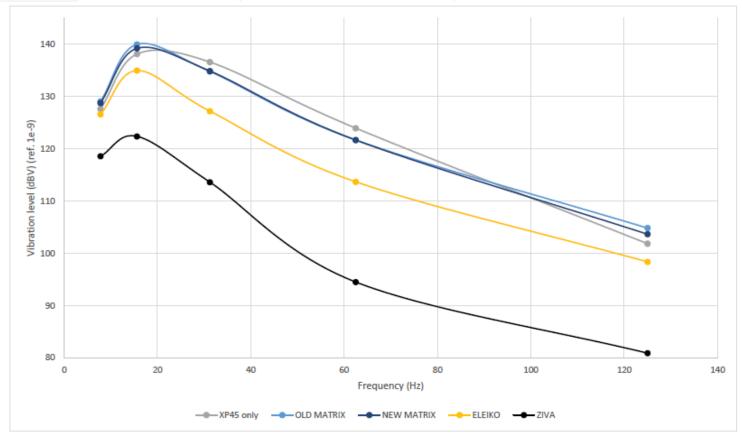
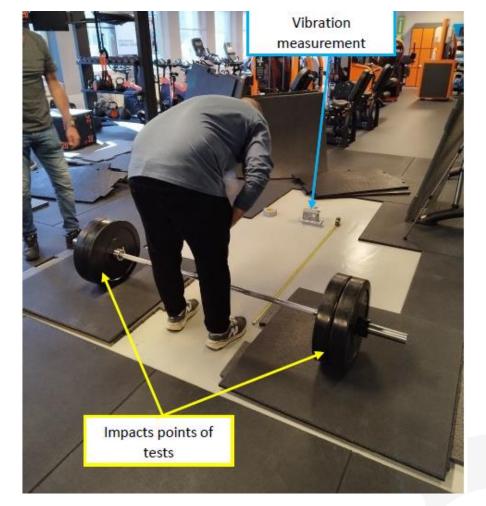
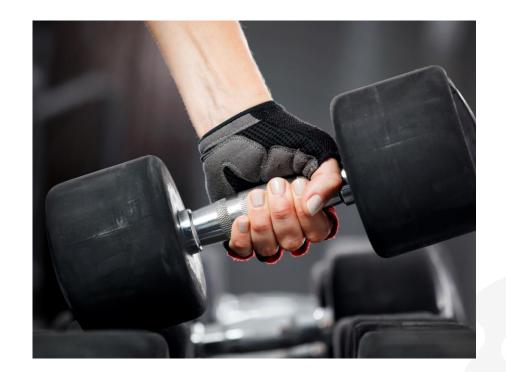




Figure 10: Vibration levels of 120 kg dumbell measurements




## Contraintes et limites

- Limites structurelles des bâtiments = drapeau noir
- Sensibilité des activités contiguës = drapeau noir
- Usage utilisateur, pédagogie des encadrants
- Résistance mécanique des solutions
- Ressenti utilisateurs (rebonds)
- Stabilités des machines

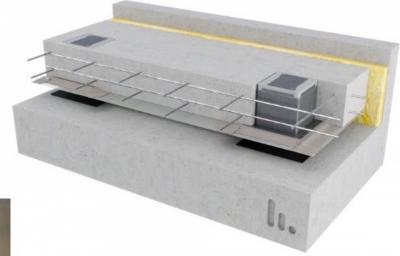






## Conclusion

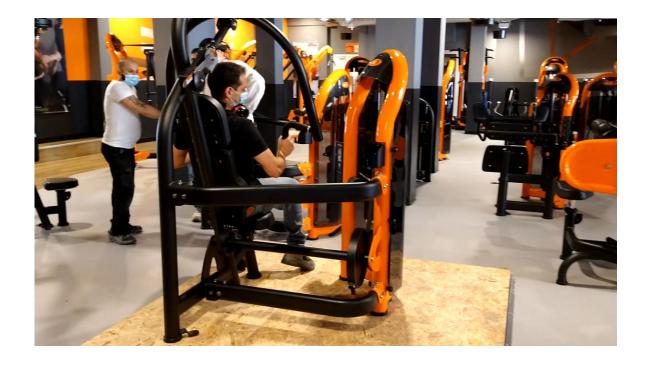
• Optimisation en continu (fiabilisée par les REX) du protocole de mesure (répétabilité, sécurité, pénibilité, etc.)


450 études en 3 ans auprès de 3 enseignes dans 4 pays.

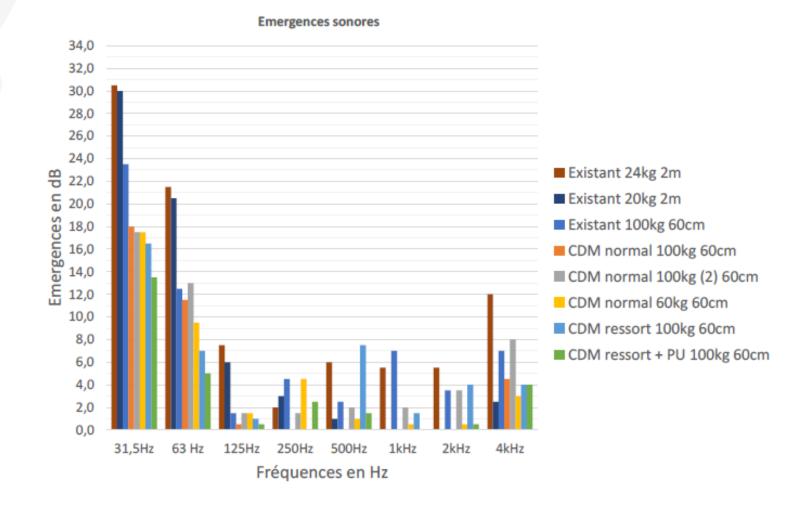


- Manque de cadre réglementaire et normatif
   Compensé par une approche « analyse de risques » et « maîtrise de l'image du club »
   Objectif principal -> cohabitation satisfaisante avec le voisinage
- Fierté de partager ce savoir-faire avec nos confrères
   Harmonisation des compétences et bonnes pratiques plus avancées en UK (Institute of Acoustics)










Impact acoustique et vibratoire des clubs de fitness dans leur voisinage





