

Caractérisations et modélisations acoustiques des granulats et tiges de Typha TyCCAO project

C. Piégay¹, P. Glé¹, M.Buatois¹,

H. Bentounsi¹ ¹Cerema – Univ. Eiffel, UMRAE – Strasbourg, France

JOURNEES TECHNIQUES ACOUSTIQUE ET VIBRATIONS

Aix-en-Provence 07-08 juin 2023

Outline

I. Context

αe

I. Context : an invasive plant that spreads quickly

Typha Australis or Typha Domingensis (scientific name)

Conditions favourable to the
 proliferation of typha due to the construction of dams on the Senegal River

- Numerous negative impacts:
 - Health
 - Economic
 - Biodiversity
 - Flood risks

- Estimated average increase in the surface area covered of about 15% per year on more than 130 km of riverbanks
- Typha occupies areas estimated at between 60,000 and 80,000 hectares

[Varis & Fraboulet-Jussila 2002]

> Measures implemented so far, based on studies and evaluations have not succeeded in curbing the spread of Typha

[Mietton *et al.* 2007] [Kane & Akpo 2017] [Kotschoubey 2017]

On the acoustical characterization and modelling of Typha reed aggregates and stems : TyCCAO project C. Piégay et al.

4

αe

I. Context : a significant potential in terms of vegetal biomass

- 2 possibilities for using Typha have been identified
 - Production of energy using its combustion [Caro et al. 2011]
 - Use as a building material with insulating properties

The Senegalese and Mauritanian governments could contribute both to the energy transition of their countries, but also fight against the proliferation of Typha.

Typha Combustible and Construction in West Africa

https://www.tyccao-typha.org/

TyCCAO goals

- Contribute to the ecological transition
- Fight against global warming

by developping

- Renewable fuels
- Bio-based materials based on both Typha particles and stems

On the acoustical characterization and modelling of Typha reed aggregates and stems : TyCCAO project C. Piégay *et al.*

5

II. Materials

Same batch Elementerre SARL Sénégal	

Materials: Typha particles and stems

9 variants of Typha particules studied

Defibrated

Typha

mr

de

Raw Typha

ACOUSTIQUE

ET VIBRATIONS

Typha > 10mm Typha > 4mm

Typha > $500\mu m$ Typha > $250\mu m$ Typha > 2mm Typha > 1mm

Typha low pass

III. Experimental characterizations

III. Experimental characterizations: Particles and stems size distributions

Granulometric analysis of defibrated Typha particles

Image analysis:

- 9.40g sample \leftrightarrow 2508 particles
- Resolution 130px/mm
- Automatic image processing using Image J software

Surface	Nor	mal law	Logno	Lognormal law		
weight	mea n	Std	mean	std		
Length (mm)	26,3	19,0	21,2	1,9		
Width (mm)	3,4	2,1	2,8	1,8		
Surface (mm ²)	92,6	134,3	47,3	3,1		
Length/Width	8,4	4,5	7,5	1,6		

Distributions are fairly true to lognormal distributions, which is very often characteristic of the way plant particles are produced

Stems size

Characterization of an indicative representation of a batch of 200 stems

	Number of stems	Mean diameter (mm)	Min diameter (mm)	Max diameter (mm)
A.	12	11,6	3,6	20,1

100	Number	Mean diameter	Min diameter (mm)	Max diameter (mm)
and the	of stems	(mm)		
	188	9,1	3,7	18,0

III. Experimental characterizations: Bulk densities

Typha particles

m

 $\mathbf{i}(\mathbf{e})$

	Loose density	Packed density
Mean	33,8 kg.m ^{-3}	51,5 kg.m ⁻³
Std	$4,8 kg.m^{-3}$	$8,1 kg. m^{-3}$

$\rho_{Typha} \ll \rho_{Hemp} / \rho_{Flax} / \rho_{wood}$

High fiber content seems acts like a spring in the mixture and prevents the particles from being compacted

Typha stems

	Sample type	Diameter Bulk densit values Mean (mm)		lk density (kg.m³) Standard dev.
Colore .	With lumen (stem lower part)	[9,5 - 20,1]	211	21
6	Without lumen (stem lower part)	[10,5 - 19,9]	222	28
00	Without lumen (stem upper part)	[3,6 - 8,4]	202	97

Results relatively homogeneous

Samples from the upper part of the stems show a much higher standard deviation that is difficult to explain at this level of analysis

αe

III. Experimental characterizations: Open porosity

$$\phi = 1 - rac{
ho_a}{
ho_s}$$
 [Leclaire et al. 2013]

Particles skeleton density

	Frame density (kg.m ⁻³)		
Material	Mean	Std	
Defibred Typha	675	27	
Raw Typha	711	97	
Typha > 10mm	655	29	
Typha > 4mm	641	16	
Typha > 2mm	868	65	
Typha > 1mm	979	70	
Typha > 500µm	1042	63	
Typha > 250µm	972	47	
Low pass Typha	1096	61	

Stems skeleton density

Sample type	Frame density (kg.m ⁻³)		Poro	sity (%)
	Mean	Std	Mean	Std
With lumen (lower part)	757	20	72,4	1,6
Without lumen (lower part)	705	54	69,5	2,3
Without lumen (upper part)	1086	360	82,4	5,1

 $\phi_{loose} = 95\%$

 $\phi_{packed} = 93\%$

• Particles and stems skeleton denties values are consitent

- Skeletal densities are largely lower than the densities of the plant components (cellulose, lignin, pectin, etc.) which are rather of the order of 1450 kg.m⁻³ [Glé et al. 2021]
- Part of the porosity is not accessible with the porosimeter used (air volume comparison). This can be explained in part by the presence of very small pores

αe

III. Experimental characterizations: airflow resistivity

Particles airflow resistivity

Stems airflow resistivity

Configuration stack	Thickness (mm)	Resistivity (N.m ⁻⁴ .s ⁻¹)
Perpendicular	20	302
Parallel	50	523
Perpendicular	53	388
Parallel	70	776
Parallel	90	672
Perpendicular	95	378

- Σ .
 - Results very homogeneous even though parallel config. shows very slightly higher values than the perpendicular config.
 - Values remain relatively low, below values shown by the majority of insulating wools such as hemp, flax, kenaf, etc.

[Piégay et.al. 2018]

- Increasing of flow resistance values as a function of the density
- The stacks made up of the smallest particles are the most resistive
- Very limited effect of the fibers in the resistivity value

Experimental characterizations: Particules acoustical performances

Effect of density

 $\mathbf{i}(\mathbf{e})$

Performance levels and behaviors characteristic of vegetal granular stacks

Effect of particle size distribution

resistivity) Increase of the sound absorption coefficient for fine

JOURNEES TECHNIOUES ACOUSTIOUE **ET VIBRATIONS**

particles up to an optimum particle size (Typha > 500 μm) 13 On the acoustical characterization and modelling of Typha reed aggregates and stems : TyCCAO project C. Piégay et al.

III.Experimental characterizations: Stems acoustical de performances for parallel config.

Effect of density

 Σ the increase in thickness will contribute to a low frequency shift of the absorption peaks

Effect of thickness

The increase in the density of the samples has the effect of shifting the absorption peaks towards the lower frequencies

III.Experimental characterizations: Stems acoustical performances for perp. config.

Effect of thickness

de

Increasing sample thickness significantly reduces the frequency of absorption peaks

IV. Acoustical Modelling

Ep. (mm)	Masse vo- lumique (kg.m ⁻³)	φ	$\sigma (N. m^{-4}. s^{-1})$	α_{∞}	Λ	Λ'
	54	0,94	302	1.95	0,8.10-4	$1,9.10^{-4}$
20	51	0,94	302	1,95	0,8.10-4	1,9.10-4
	52	0,94	302	1,70	0,8.10-4	$2,0.10^{-4}$
	72	0,92	388	3,5	1,8.10-4	$3,0.10^{-4}$
50	64	0,92	388	2,8	1,4.10-4	3,8.10-4
	65	0,92	388	2,8	1,2.10-4	$4, 2.10^{-4}$
100	70	0,92	372	2,8	1,4.10-4	3,8.10-4

IV. Acoustical modelling: JCA / JCAL

semi-phenomenological Modelling approach based on pore geometry

[Johnson et al. 1987]

[Champoux & Allard 1991]

- Porosité **φ**
- ο Resistivité *σ*

Ο

0

- \circ Tortuosité α_{∞}
- \circ Longueur caractéristique visqueuse Λ
- \circ Longueur caractéristique thermique Λ'
 - k'_0 (JCAL) [Lafarge et al. 1997]

 $\mathbf{i}(\mathbf{e})$

IV. Acoustical modelling: Particules

Effect of density

mr

 $\mathbf{i}(\mathbf{e})$

- Very good agreement between model and measurement with differences of less than 5% in absorption and less than 1dB in attenuation
- No double porosity effects have been observed

IV. Acoustical modelling: Stems

Effect of density

mr

Te

- Very good agreement between model and measurement
- For a thickness of 50 mm and a density of 70 kg.m⁻³, the perpendicular configuration has a first absorption peak at around 650 Hz, whereas it is close to 1600 Hz for the parallel configuration
- The value of the acoustic absorption coefficient of this first peak is close to 1 for the perpendicular configuration whereas it is close to 0.9 for the parallel configuration

- Despite slightly atypical properties compared to more conventional vegetal aggregates such as hemp or flax shives, results show promising results in term of sound absorption level, and evidences of the effects of density, thickness, particle size and orientation on this performance
- The observed behavior can be modelled under a simple porosity approach for these materials with semiphenomenological method such as JCA or JCAL modelling
- Further investigations will now aim at understanding the evolution of the acoustical parameters as a function of the configuration.

C. Piégay et al.

Thank you for your attention

o Contact :

- clement.piegay@cerema.fr
- Philippe.gle@cerema.fr
- <u>http://www.umrae.fr/</u>

18