

#### Journées Techniques Acoustique et Vibrations Lille – France – 11-12 mars 2020



# LIFE E-VIA: contrôle du bruit des véhicules électriques par optimisation de l'interaction pneumatique-chaussée

Julien CESBRON, <u>Marie-Agnès PALLAS</u>, Philippe KLEIN, Simon BIANCHETTI, Adrien LE BELLEC, Vincent GARY

Université Gustave Eiffel – UMRAE











#### LIFE E-VIA overview



- LIFE E-VIA: Electric Vehicle nolse control by Assessment and optimisation of tyre/road interaction
- European LIFE 2018 program Environment and Resource efficiency
- Project reference: LIFE18 ENV/IT/000201
- o Duration: 01/07/2019 to 31/01/2023
- Total budget: 1 797 030 €
- EU contribution (55%): 933 295 €
- o Project location: Italy, France, Germany
- Website: <a href="https://life-evia.eu">https://life-evia.eu</a>







#### LIFE E-VIA consortium



#### o Italy:

- Municipality of Florence (FI, Coordinator Contact person: Arnaldo Melloni)
- Mediterranea University of Reggio Calabria (UNIRC)
- iPOOL S.r.l (IPOOL, spin-off company of Pisa CNR)
- Vie en.ro.se Ingegneria S.r.l (VIENROSE, consultancy firm Florence)

#### o France:

Université Gustave Eiffel (IFSTTAR, Nantes, Lyon)

#### o Germany:

Continental Reifen Deutschland GmbH (CRD, tyre manufacturer – Hannover)

















# LIFE E-VIA main objectives



- Tackle noise pollution from road traffic noise focusing on a future perspective in which electric and hybrid vehicles will be a consistent portion of flow.
- Combine knowledge of road optimization and tyre development in order to test an optimized solution for reducing noise in urban areas and Life Cycle Cost.
- Reduce noise for roads inside very populated urban areas through the implementation of a mitigation measure aimed at optimizing road surfaces and tyres of Electric Vehicles. Two road surfaces and at least 5 different EV (including tyres specifically designed for EVs) will be tested.
- The soundscape holistic approach will be used to evaluate the performance of EV vs ICEV in the newly built scenario.



# LIFE E-VIA actions and planning



|                                        | Action                                                      |   |    |        | Т | 2020 |      |     | 2021 |   |        |    | 2022   |        |     | 2023 |   |   |        | 2024 |        |        |
|----------------------------------------|-------------------------------------------------------------|---|----|--------|---|------|------|-----|------|---|--------|----|--------|--------|-----|------|---|---|--------|------|--------|--------|
| Action<br>numbe                        | Name of the action                                          | ı | II | III IN | v | ı    | 1 11 | ııv | 1    | П | ш      | ıv | 1 1    | 1 11   | ııv | 1    | п | Ш | IV     | ı    | 11 11  | ııv    |
| A. Pre                                 | A. Preparatory actions (if needed)                          |   |    |        |   |      |      |     |      |   |        |    | $\neg$ |        |     |      |   |   |        |      |        |        |
| A.1                                    | Electric vehicles and their noise emission                  | П |    |        | П |      |      |     |      |   |        |    |        |        |     |      |   |   |        |      | $\top$ | $\Box$ |
| A.2                                    | Quiet pavement technologies and their performance over time | П | T  |        | T |      |      |     |      |   |        |    |        |        |     |      | Г |   | П      |      | T      | П      |
| A.3                                    | Tyre role in the new context of EV and ICEV                 | П |    |        | Ţ |      |      | Т   |      |   |        | T  |        | Т      | T   | Γ    | Г |   | П      |      | Т      | П      |
| B. Implementation actions (obligatory) |                                                             |   |    |        |   |      |      |     |      |   |        |    |        | $\neg$ |     |      |   |   |        |      |        |        |
| B.1                                    | Tracks design                                               | П |    |        | П | T    |      |     |      |   |        |    |        |        |     |      |   |   |        |      | $\top$ | $\Box$ |
| B.2                                    | Tyre-pavement coupling study and prototype implementation   | П | T  |        | T |      |      |     |      |   |        | T  | T      | Т      | T   | Т    | Г |   | П      |      | Т      | П      |
| B.3                                    | Pilot area: Implementation. Replication and tranferability  | П |    |        | Т | T    |      |     |      |   |        |    |        |        |     |      |   |   | П      | T    | $\top$ | П      |
| B.4                                    | Track efficiency tests in the pilot area                    | П | T  |        | T | T    |      |     |      |   |        |    |        |        |     | Π    | Γ |   | П      | T    | Т      | П      |
| B.5                                    | Soundscape analysis                                         | П | T  |        | T |      |      |     |      |   |        |    |        |        |     |      | Г |   |        |      | T      | П      |
| B.6                                    | Evaluation of EV noise emissions                            | П |    |        | Т | T    |      |     |      |   |        |    |        |        | ı   | Т    | Г |   | П      |      | Т      | П      |
| B.7                                    | Holistic performances of tyres                              | П | T  |        | T |      |      |     |      |   |        |    |        |        |     |      | Г |   |        | T    | Т      | П      |
| C. Mon                                 | itoring of the impact of the project actions (obligatory)   |   |    |        |   |      |      |     |      |   |        |    |        |        |     |      |   |   |        |      |        |        |
| C.1                                    | Monitoring of the impact of the project actions             |   |    |        | П | T    |      |     |      |   |        |    |        |        |     |      |   |   |        |      | Т      | П      |
| C.2                                    | Life cycle analysis (LCA) and life cycle costing (LCC)      | П | T  |        | T | T    |      |     |      |   |        |    |        |        |     |      | Г |   |        |      | Т      | П      |
| D. Pub                                 | lic awareness and dissemination of results (obligatory)     |   |    |        |   |      |      |     |      |   |        |    |        |        |     |      |   |   |        |      |        |        |
| D.1                                    | Information and awareness raising activities                |   |    |        | П | Ī    |      |     |      |   |        |    |        |        |     |      |   |   |        |      | $\top$ | П      |
| D.2                                    | Technical dissemination activities to stakeholders          | П |    |        | Ī |      |      |     |      |   |        |    |        |        |     |      |   |   | П      | T    | T      | П      |
| E. Proj                                | ect management (obligatory)                                 |   | •  | -      |   | •    |      | •   |      |   |        |    |        | •      |     | -    |   |   |        |      |        |        |
| E.1                                    | Coordination, Monitoring and Project management             | П | Ţ  |        | П |      |      |     |      |   |        |    |        |        |     |      |   |   | П      | Т    | Т      | П      |
| E.2                                    | After LIFE Plan                                             | П | T  |        | T | T    | T    | T   |      |   | $\Box$ | 寸  | T      | T      |     |      |   |   | $\Box$ | 丁    | T      | П      |
|                                        |                                                             |   |    |        |   |      |      |     |      |   |        |    |        |        |     |      |   |   |        |      |        |        |



# LIFE E-VIA expected impacts



- Awareness raising: 20 000 individuals reached. The estimation has been based on the experience on previous LIFE Projects and on the several initiatives that are planned during the project.
- Noise level reduction: reduction of  $L_{den}$  and  $L_{night}$  noise levels by 5dB(A). The estimation of noise exposure at receivers living roadside.
- Soundscape improvement: acoustic perception and comfort of an optimized asphalt and EV with respect to a standard one. The estimation of the perception improvement will be verified according to the questionnaires that will be collected.
- Number of people affected by noise reduction: the estimation is based on the evaluation of the number of residents in a buffer of 50m from the street axis.



### Overview of IFSTTAR contribution



#### o IFSTTAR is **leader** in actions:

- A1: Electric vehicles and their noise emission
- B2: Tyre-pavement coupling study and prototype implementation

#### o IFSTTAR contributes to:

- A2, A3: preparatory actions
- B1, B3, B4, B6, B7, B8: implementation actions
- C2, D1, D2, E1: monitoring, dissemination and management

| Partners | Actions |    |    |    |    |    |    |    |    |    |    |    |    |            |    |    |
|----------|---------|----|----|----|----|----|----|----|----|----|----|----|----|------------|----|----|
|          | A1      | A2 | A3 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | C1 | C2 | D1 | <b>D</b> 2 | E1 | E2 |
| FI       |         |    |    | X  |    | X  |    |    | X  |    | X  |    | X  | X          | X  |    |
| CRD      |         |    | X  |    | X  | X  |    |    |    | X  |    |    | X  | X          | X  | X  |
| IFSTTAR  | X       | X  | X  | X  | X  | X  | X  |    | X  | X  | X  |    | X  | X          | X  |    |
| IPOOL    |         | X  |    |    | X  |    |    |    | X  |    | X  | X  |    | X          | X  |    |
| UNIRC    | X       | X  |    | X  | X  | X  |    |    |    |    | X  | X  | X  | X          | X  |    |
| VIEN     | X       |    |    |    |    | X  |    | X  |    |    | X  |    | X  | X          | X  |    |



#### Action A1 - EVs and their noise emission



- Preparatory action (Months 1 to 7)
- Literature review considering different aspects:
  - EV fleet and distribution across Europe (linked with action B<sub>3</sub>)

Changes of driving behaviour with EV and impact on noise

(linked with actions B1 and B2)

 Changes in noise source emission (linked with action B2)

- Changes in noise perception (linked with action B5)
- EV consideration in noise prediction models (linked with action B6)
- Contributing partners: VIENROSE, UNIRC





#### Action B2 – Tyre-pavement coupling study



- Implementation action divided in 4 sub-actions:
  - B21: Acoustical characterization of EVs on existing tracks (IFSTTAR)
    - Months 1 to 9
  - B22: Construction of a B1-based test track prototype (IFSTTAR, UNIRC)
    - Months 8 to 13
  - B23: Characterization of the B1-based prototypal test section (IFSTTAR, IPOOL)
    - Months 13 to 16
  - B24: Selection of optimized EV tyres (CRD, IFSTTAR)
    - Months 15 to 27





#### Action B21 - Acoustical characterization of EVs



#### Measurement campaign performed on IFSTTAR reference test track





3 impervious road surfaces



3 absorbing road surfaces









#### Action B21 - Acoustical characterization of EVs



- Types of measurements
  - Standard Controlled Pass-By (CPB) on all road surfaces
  - Microphone array pass-by measurements (only on ISO 10844 road surface)
- Pass-by conditions:
  - Constant speed : from 20 to 110 km/h in 5 km/h steps
  - Full acceleration for start speeds from 0 to 50 km/h, in 10 km/h steps
  - Braking for start speeds from 40 km/h to 70 km/h, in 10 km/h steps







# Action B21 - Acoustical characterization of EVs



- o Planned vehicles:
  - One ICE Vehicle (Renault Kangoo Diesel)
  - Several EVs (Renault Kangoo ZE, Renault Zoe, C-Zero, Nissan Leaf, BMW i3, Tesla Model 3)
- Already tested in August 2019:
  - Renault Kangoos (ICEV and EV) and Renault Zoe







#### Action B22 – Prototype construction



- Construction of a B1-based test track prototype:
  - Located on IFSTTAR reference test track in Nantes
  - Call for tender planned in April 2020 based on B1 recommendations
  - Construction planned in July 2020





#### Action B23 – Prototype characterization



- CPB and microphone array measurements on several EVs
- CPX measurements
- Measurement of road surface properties influencing tyre/road noise
  - 3D surface texture
  - Sound absorption (impedance tube and extended surface method)
  - Mechanical impedance
- Other road surface properties:
  - SRT pendula friction tests
  - MPD measurements
  - Dynamical wet friction test
  - Wehner and Schulze tests (assessment of friction durability from surface samples)



#### Action B24 – Selection of optimized EV tyres



- Carved prototype tyres delivered by CRD to IFSTTAR for testing on the prototypal test surface between autumn 2020 and autumn 2021:
  - Reference tyres: standard European summer replacement market at the time of testing (e.g. Continental EcoContact 6)
  - Other tyres: variations of tread pattern, construction and/or compound of the reference
  - Aim: optimizing the balance of exterior noise performance and other tyre performances (e.g. rolling resistance, grip) for EV vehicles
- Tests to be performed by IFSTTAR:
  - Constant speed and accelerated pass-by noise measurements
  - CPX measurements on the prototypal test section and further standard road surfaces
  - Pass-by measurements will be performed using EV and ICE test vehicles representative of the respective markets



# Thank you for your attention



#### o Contact:

- julien.cesbron@ifsttar.fr
- <u>marie-agnes.pallas@ifsttar.fr</u>

#### o Links:

- http://www.umrae.fr/
- https://life-evia.eu





The Joint Research Unit in Environmental Acoustics (UMRAE) is a research laboratory common to Ifsttar and Cerema