Conclusion

Modèles homogénéisés pour les vibrations verticales des bâtiments

Céline CHESNAIS Claude BOUTIN Stéphane HANS

Université Paris-Est, IFSTTAR, GERS, SV, Marne-la-Vallée Université de Lyon, ENTPE, LGCB/LTDS CNRS 5513, Vaulx-en-Velin

Plan de la présentation

- Introduction
- 2 Homogénéisation des milieux périodiques discret
- Descriptions macroscopiques
- Conséquences de la résonance locale
- Conclusion

- Composante importante à proximité de l'épicentre
- Vibrations dues aux chantiers ou au trafic

Motivation

L'excitation verticale des bâtiments...

- Composante importante à proximité de l'épicentre
- Vibrations dues aux chantiers ou au trafic

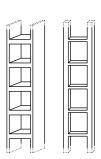
...entraîne une réponse complexe.

Structures creuses constituées de poutres et de plaques bien plus rigides en traction-compression qu'en flexion

- ⇒ Modes verticaux pilotés par la traction-compression des murs et poteaux à l'échelle de la structure
- Modes de flexion des planchers parfois dans la même gamme de fréquences

Étude de bâtiments idéalisés = répétition périodique de portiques

Poutre équivalente obtenue par homogénéisation



Avantages de l'homogénéisation

- Pas d'hypothèse (mise à part la séparation d'échelles)
- Formulation analytique
- Possibilité de revenir à l'échelle locale
- ⇒ Identification des paramètres clés

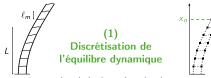
Plan de la présentation

- Introduction
- Momogénéisation des milieux périodiques discrets

Descriptions macroscopiques

- 3 Descriptions macroscopiques
- Conséquences de la résonance locale
- 6 Conclusion

Descriptions macroscopiques



Intégration de la dynamique locale

$$\begin{array}{c|c}
 & T^F \mid_{N^F} \\
\hline
N^D \mid_{T^D} & M^F
\end{array}$$

Poutre d'Euler-Bernoulli

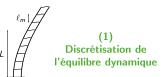
$$\mathsf{Effort} = f(u, v, \theta, \omega)$$

Équilibre des nœuds

$$E(x_n,\omega)=0$$

Homogénéisation des milieux périodiques discrets

(D. Caillerie 1989)



Intégration de la dynamique locale

$$\begin{array}{c|c}
 & T^F \downarrow N^F \\
\hline
N^D \downarrow T^D & M^F
\end{array}$$

Poutre d'Euler-Bernoulli

$$\mathsf{Effort} = f(u, v, \theta, \omega)$$

Équilibre des nœuds

$$E(x_n, \omega) = 0$$

Processus d'homogénéisation

Condition de séparation d'échelles

$$=\frac{g_{H}}{L} <<$$

Développement des variables cinématiques

$$U_n = U^0(x_n) + \epsilon U^1(x_n) + \epsilon^2 U^2(x_n) + \dots$$

Développement des efforts nodaux

Normalisation

= estimation des paramètres physiques en fonction de ϵ

Homogénéisation des milieux périodiques discrets (D. Caillerie 1989)

Intégration de la dynamique locale

Poutre d'Euler-Bernoulli

Effort =
$$f(u, v, \theta, \omega)$$

Équilibre des nœuds $E(x_n, \omega) = 0$

Développement de l'équilibre des nœuds
$$E = E^0(x) + \epsilon E^1(x) + \epsilon^2 E^2(x) + \dots$$

Condition de séparation d'échelles

Processus

d'homogénéisation

$$\epsilon = \frac{\ell_m}{L} << 1$$

Développement des variables cinématiques

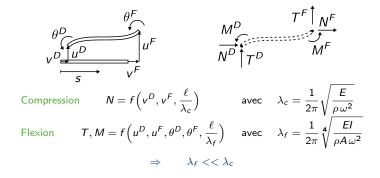
$$U_n = U^0(x_n) + \epsilon U^1(x_n) + \epsilon^2 U^2(x_n) + \dots$$

Développement des efforts nodaux

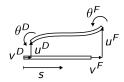
Normalisation

= estimation des paramètres physiques en fonction de ϵ

Développement des efforts nodaux



Développement des efforts nodaux



$$N = f\left(v^D, v^F, \frac{\ell}{\lambda_c}\right)$$

$$N = f\left(v^D, v^F, \frac{\ell}{\lambda_c}\right)$$
 avec $\lambda_c = \frac{1}{2\pi} \sqrt{\frac{E}{\rho \, \omega^2}}$

$$\lambda_f$$

$$T, M = f\left(u^D, u^F, \theta^D, \theta^F, \frac{\ell}{\lambda_f}\right)$$
 avec $\lambda_f = \frac{1}{2\pi} \sqrt[4]{\frac{EI}{\rho A \omega^2}}$

$$\Rightarrow \lambda_f << \lambda_c$$

$$\ell \approx \lambda_{\rm f} << \lambda_{\rm c}$$

$$\lambda_f << \lambda_c \approx \ell$$

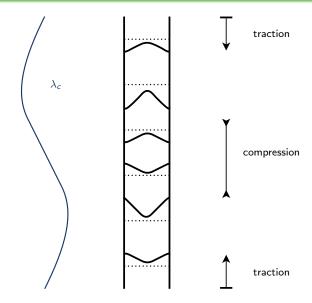
État local quasi-statique DL de tous les efforts Dynamique newtonienne

Résonance en flexion DL de N uniquement Dynamique atypique

Pas de séparation d'échelles Pas d'homogénéisation

Résonance en flexion

Introduction



Descriptions macroscopiques

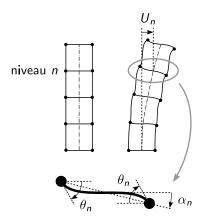
Plan de la présentation

- Introduction
- 2 Homogénéisation des milieux périodiques discret
- 3 Descriptions macroscopiques
- Conséquences de la résonance locale
- 6 Conclusion

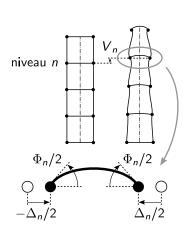
Changement de variables

Cinématique transverse

Méthode d'homogénéisation



Cinématique longitudinale



État local quasi-statique

Introduction

$$\ell_p << \lambda_f(\omega)$$

$$2E_m A_m V'' + \Lambda \omega^2 V = 0$$

Équation classique pour les poutres en compression

Descriptions macroscopiques

État local quasi-statique

Introduction

$$\ell_p << \lambda_f(\omega)$$

$$2E_m A_m V'' + \Lambda \omega^2 V = 0$$

Équation classique pour les poutres en compression

Résonance en flexion

d'inertie

$$\ell_p \approx \lambda_f(\omega)$$

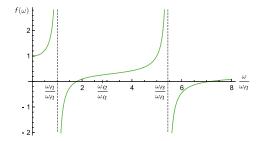
$$2E_mA_mV'' + \Lambda(\omega)\,\omega^2V = 0$$

- Modification du terme
- Masse négative après les modes impairs des planchers

Masse apparente qui dépend de la fréquence

$$f(\omega) = \Lambda_m + \Lambda_p f(\omega) \quad \text{avec}$$

$$f(\omega) = \frac{8}{3\pi \sqrt{\frac{\omega}{\omega_{f1}}} \left[\coth\left(\frac{3\pi}{4} \sqrt{\frac{\omega}{\omega_{f1}}}\right) + \cot\left(\frac{3\pi}{4} \sqrt{\frac{\omega}{\omega_{f1}}}\right) \right]}$$



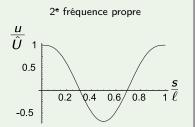
Origine physique de la masse apparente

Mouvement relatif entre les nœuds et les planchers

Déflexion des planchers

Conditions aux limites = déplacement vertical et en phase des nœuds d'amplitude \hat{U} (rotations négligées)

1re fréquence propre $\frac{\underline{u}}{\hat{U}}$ 2.105
1.105 -1.105 -2.105 $\omega \rightarrow \omega_{1}^{-1}$ $\omega \rightarrow \omega_{1}^{+}$ $\omega \rightarrow \omega_{1}^{+}$



Plan de la présentation

- Introduction
- 2 Homogénéisation des milieux périodiques discret

Descriptions macroscopiques

- Descriptions macroscopiques
- Conséquences de la résonance locale
- 6 Conclusion

Structure étudiée

Structure conçue pour mettre en évidence les effets de la résonance des planchers

$$N = 15$$
 niveaux

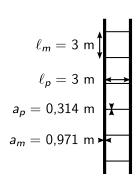
$$E_m = E_{
ho} = 30~000~{
m MPa}$$
 $u_m = u_{
ho} = 0,2$
 $\rho_m = 2~300~{
m kg/m}^3$
 $\rho_{
ho} = 14~225~{
m kg/m}^3$
 $\Lambda_{
ho} \approx \Lambda_m$

Hauteur totale $H = N \ell_m = 45 \text{ m}$

Fréquences de résonance des planchers :

$$f_{f1} = 52,08 \text{ Hz}$$

 $f_{f2} = 143,56 \text{ Hz}$
 $f_{f3} = 281,44 \text{ Hz}$

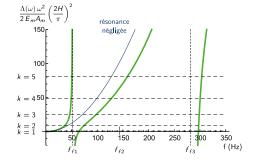


Analyse modale

Structure encastrée à la base et libre en tête

$$V(x) = B \sin(\alpha x) \quad \text{avec}$$

$$\begin{cases} \alpha^2 = \frac{\Lambda(\omega) \, \omega^2}{2E_m A_m} \\ \cos(\alpha H) = 0 \quad \Rightarrow \quad \alpha_k H = \frac{(2k-1)\pi}{2} \end{cases}$$



Conséquences de la résonance locale

- → Modification des fréquences de résonance de la structure
- → Même déformée macroscopique à plusieurs fréquences
- ⇒ Forte densité de modes au voisinage des modes impairs des planchers

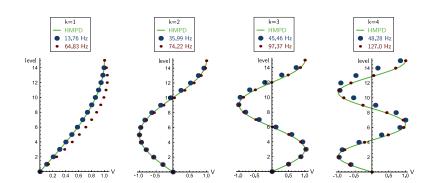
Validation numérique - Comparaison des fréquences

Déformées et fréquences modales calculées avec CESAR-LCPC et comparaison avec les fréquences estimées grâce à l'homogénéisation

Descriptions macroscopiques

k = 1		k = 2		k = 3		k = 4	
14,00	65,14	36,73	74,35	46,42	97,68	49,36	127,8
13,76	64,83	35,99	74,22	45,46	97,37	48,28	127,0
	<			<>	2221(332)1(332)	37777777778	22)[(<<<<>>)[(<)[(<)[(<)[(<

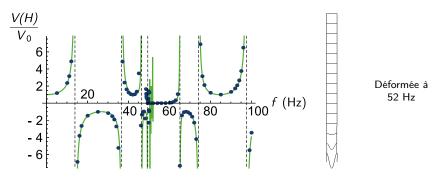
Validation numérique - Comparaison des déformées



Descriptions macroscopiques

Fonction de transfert sans amortissement

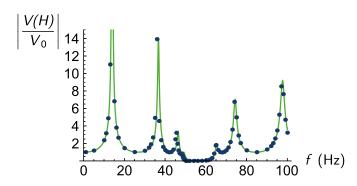
Mouvement vertical harmonique d'amplitude V_0 imposé à la base



Les fréquences pour lesquelles la masse apparente est négative constituent des bandes de fréquences interdites : les vibrations ne sont pas transmises au sommet de la structure.

Fonction de transfert avec amortissement

Amortissement : $E e^{i\eta}$ avec $\eta = 0,02$

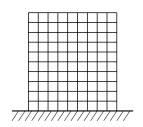


Même type de comportement mais moins de modes avant la bande de fréquences interdites

Application aux bâtiments

Bâtiment régulier latéralement

Transposition directe



Application aux bâtiments

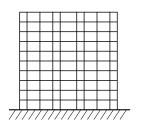
Bâtiment régulier latéralement

Transposition directe

Bâtiment plus complexe

Nombreuses fréquences de résonance associées à une faible proportion de la masse

- ⇒ Bandes de fréquences interdites très étroites
- ⇒ Répartition atypique des fréquences propres



Application aux bâtiments

Bâtiment régulier latéralement

Transposition directe

Bâtiment plus complexe

Nombreuses fréquences de résonance associées à une faible proportion de la masse

- ⇒ Bandes de fréquences interdites très étroites
- ⇒ Répartition atypique des fréquences propres

Autres effets à prendre en compte

- Existence de modes modulés
- Interaction sol-structure

Plan de la présentation

- Conclusion

Conclusion

À cause du fort contraste de rigidité entre la traction-compression et la flexion dans les poutres, les modes verticaux des bâtiments peuvent coïncider avec la résonance en flexion des planchers.

Conséquences

- Masse apparente qui dépend de la fréquence ⇒ mécanique newtonienne généralisée
- Répartition atypique des modes propres
- Même déformée macroscopique à différentes fréquences
- Bandes de fréquences interdites

Conclusion

À cause du fort contraste de rigidité entre la traction-compression et la flexion dans les poutres, les modes verticaux des bâtiments peuvent coïncider avec la résonance en flexion des planchers.

Conséquences

- Masse apparente qui dépend de la fréquence ⇒ mécanique newtonienne généralisée
- Répartition atypique des modes propres
- Même déformée macroscopique à différentes fréquences
- Bandes de fréquences interdites

Structures idéalisées

- Cadre d'analyse obtenu par homogénéisation
- Confirmation numérique
- Quelle importance dans des bâtiments réels?

Merci de votre attention

Université Paris-Est, IFSTTAR Département GERS (Géotechnique, Environnement, Risques naturels et Sciences de la terre) Laboratoire Séismes et Vibrations

14-20 Boulevard Newton Cité Descartes, Champs sur Marne F-77447 Marne la Vallée Cedex 2

Tel: 01 81 66 83 78

Mail: celine.chesnais@ifsttar.fr

