Journées Techniques Acoustique et Vibration

Caractérisation de la compacité du ballast ferroviaire par méthodes sismiques

Delphine JACQUELINE

Thèse soutenue le 17 décembre 2015 et encadrée par M. Jean-Pierre MAGNAN, M. Jean-François SEMBLAT et M. Cyrille FAUCHARD

Plan

Introduction

- Contexte
- Description du milieu
- Ballast
- Démarche
- 2 Expérimentations
 - Description
 - Instrumenter le ballast
 - Traitement des ondes

- 3 Modélisation
 - Modélisations
 - Continue
 - Discrète
- 4 Conclusions
 - Expérimentations échelle 1
 - Modèles réduits
 - Perspectives

Description du milieu étudié

Illustration d'une structure ferroviaire - Kouroussis 2009

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Besoin de caractériser la compacité du ballast?

- Serrage du ballast : paramètre ferroviaire important pour assurer qualité de l'ouvrage (défaut de serrage → diminution de vitesse de train) sécurité de l'usager,
- Étude de ce paramètre par la compacité au moyen de méthodes sismiques,
- Méthodes existantes ponctuelles et difficiles à mettre en place, littérature succincte propagation dans ballast,
- Demande forte des exploitants de voie (SNCF),
 - Vieillissement des voies (doublement de la maintenance),
 - Besoin de vérification de la mise en œuvre du ballast (ouverture des marchés), objectif de moyen (6 passages de la bourreuse) → objectif de résultats (densité),

4

Introduction Expérimentations Modélisation Conclusions Description du milieu Ballast Démarche

Le ballast : un milieu complexe?

- Milieu complexe différent d'un milieu continu :
 - Éléments grossiers (25-50 / 31,5-63 mm), VER (Volume Elémentaire Représentatif), épaisseur de couche, e, faible,

• Empilement de grains soumis à la charge du train créant des chainons de force.

Quelle est la démarche scientifique?

Deux orientations sont envisagées :

Analyse du ballast à grande échelle : expérimentations à l'échelle 1 pour étudier sa compacité au moyen de la réfraction, la dispersion des ondes de surface et le rapport H/V → hypothèse d'un milieu continu (Payeur 2013, Zhai 2004, Bodin 2001).

Expérimentation échelle 1

Schémas des expérimentations

6

Sources de faible énergie pour rester dans une réponse linéaire \rightarrow hypothèse milieu pseudo élastique sans déplacement d'éléments.

Introduction Expérimentations Modélisation Conclusions Description du milieu Ballast Démarche

Quelle est la démarche scientifique?

- ② Analyse du ballast avec un dispositif de petite dimension : expérimentation sur modèle réduit → hypothèse d'un milieu discret (Saussine 2004, Guerin 1996)
 - étudier la réponse du ballast suivant sa compacité à un effort à travers une couche de 15 et de 30 cm de ballast,
 - comparer avec une modélisation continue aux éléments finis (CESAR-LCPC) et une modélisation discrète (STTAR3D, Dimnet 2002).

Modèle réduit

Ces comparaisons doivent permettre :

- apprécier la pertinence des méthodes de modélisation,
- aider à comprendre les phénomènes physiques.

Définir les paramètres des dispositifs sismiques.

Dispositif expérimental

8

30 cm de ballast compacté et foisonné				
Nb géophones	Nb essais	Sources	Offsets	Résultats
		Mantaard	15	Réfraction
8 GT	3	Vibrateur P	25 35	MASW
		Vibrateur I	45	H/Vévènement?
			55	Pic à 1000 et 1500 Hz
	Enregistrements avec sources face aux 8G3D			?
24 GM lfsttar	Quelques essais	Vibrateur I	48	Réfraction
				MASW
Nombre d'essais = 100				

Vue en coupe

Pour étudier l'influence de l'épaisseur du ballast.

17 m x 6,6 m		L AT AM
F	Planche 2	 Source GT GM
C6 – Ballast 31,5/50		30 cm
C5 – Ballast 31,5/50		30 cm
C4 – Ballast 31,5/50	4	30 cm
C3 - Sous couche GNT 0/3 5	<u> </u>	17 cm
C2 – Sol support Sable B2		30 cm
C1 – Sol support Sable B2		30 cm

Vue en coupe

Dispositif expérimental

30 - 60 - 90 cm de ballast compacté et foisonné				
Nb géophones	Nb essais	Sources	Offsets	Résultats
		MarteauV	25	Réfraction
8 GT +16 GM	5	BouleP MarteauH	35 45	MASW
		Vibrateur P Vibrateur I	55 110	H/Vévènement
6 AT + 10 AM				
Nombre d'essais = 750				

Pour valider les méthodes MASW et H/V BDF.

14 m x 4 m	Planche 3	 Source GT GM 	
	00000	**	
C6 – Ballast 31	,5/63	20 cm	
C5 - Ballast 31	,5/63	30 cm	
C4 - Ballast 31	30 cm		
C3 – Sous couche GNT 0/31,5 20			
C2 – Couche de	e forme GNT 0/60	35 cm	
C1 - Sable B2		80 cm	

Vue en coupe

Dispositif expérimental

80 cm de ballast compacté et foisonné					
Nb géophones	Nb essais	Sources	Offsets	Résultats	
24 GM	5	MarteauV BouleP	25 55 110	Réfraction	
				MASW	
5 GT				H/V BDF	
Nombre d'essais = 60					

Pour comparer les essais du ballast avec un milieu continu

10 m x 8 m	Planche 4	□ AT Source GT GM
C4 - Sable B2		30 cm
C3 - Sous couch	e GNT 0/31,5	17 cm
C2 – Couche de	forme GNT 0/31,5	50 cm
C1 – Sol suppor	t Sable B2	80 cm

Vue en coupe

Dispositif expérimental

30 cm de sable compacté				
Nb géophones	Nb essais	Sources	Offsets	Résultats
			25	Réfraction
		MarteauV	35	MASW
8 GT +16 GM	5	Vibrateur P	45	
		Vibrateur I	55	
			110	
Nombre d'essais = 60				

Description Instrumenter le ballast Traitement des ondes

Masse volumique mesurée par méthode nucléaire

Tassement de 4 à 10 cm ho_s augmente avec la profondeur

- ho_s ballast compacté : 1,81 \pm 0,06 t/m^3 (épaisseur 30 cm),
- ho_s ballast foisonné : 1,56 \pm 0,04 t/m^3 .

(GDS200)

Choix des capteurs

Instrumentation à la source

Accéléromètre

1er géophone

Géophone à la source

< ∃ > < ∃ >

- permet de caractériser la source et normaliser les essais,
- utiliser le même type de capteur que le reste de la flûte sismique.
- Instrumentation en surface sur le ballast

Géophones • GT 100 Hz sensibilité de 35 V/m/s, • GM 4,5 Hz sensibilité de 25 V/m/s

Choix de la fixation

Optimisation de la réponse du capteur par scellement \rightarrow spectre FFT

Géophone posé

ullet Réponse aléatoire fonction des contacts o Non interprétable

Géophone scellé

Géophone scellé

Scellés

• Moyenne l'effet de la transmission du signal

Choix des sources

Sources faiblement énergétiques sans panneau de voie

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Les différents aspects étudiés

- Rapport spectral signal sur bruit
- Ondes P
 - Vitesse des ondes (directe et réfractée),
 - Amortissement des ondes,
- Ondes R
 - Courbe de dispersion,
- Analyse du signal
 - Rapport H/V évènement et bruit de fond.

Introduction Expérimentations Modélisation Conclusions Description Instrumenter le ballast Traitement des ondes

Calcul des vitesses de propagation des ondes P

Synthèse des vitesses des ondes P directes - V1

- Nb d'essais : \simeq 300 (ho, Offset, épaisseur, répétabilité)
- V1compacté > V1foisonné
- V1 peu dépendant de l'épaisseur.

V _P Ballast		Ballast	Sable
compacté		foisonné	compacté
V1 (m/s)	300 ± 40	210 ± 20	280 ± 20

Synthèse des vitesses des ondes P réfractées - V2

- Nb d'essais : \simeq 300 (ho, Offset, épaisseur, répétabilité)
- V2compacté > V2foisonné
- V2 dépendant de l'épaisseur.

V _P Ballast		Ballast	Sable
compacté		foisonné	compacté
V2 (m/s)	750 ± 250	400 ± 100	

En théorie

Réfraction interface Ballast / Sous-couche \rightarrow V2 identique guelque soit l'épaisseur de ballast

30 cm de ballast

60 cm de ballast

Observations non conformes à la théorie

300

400

Hypothèse

Réfraction zone de compactage dans ballast

Couche de 60 cm

Vitesse dans ballast compacté

- V2 est influencée par l'interface sous-jacente
- \simeq V2 correspond à $\rho_d \neq$ couches,
- V2foisonné varie que V2compacté \rightarrow influence de ρ_s sur V2compacté

Masse volumique mesurée

Delphine JACQUELINE

Caractérisation géophysique du ballast ferroviaire

80 cm

ss-cou od=2.16t/m3

od=1.57t/m3

d=1.71t/m3

d=1.81t/m3

Ondes de surface - courbe de dispersion moyenne

Modèle réduit

- Nécessité de **comprendre** les phénomènes au moyen de modélisations de faible dimension.

Diffraction prépondérante

Rapprochement milieu continu

- Transmission d'un effort à travers une couche de ballast (C-F),
- Dispositif de faible dimension (1 m²)
 - \rightarrow limiter temps de calcul,

Modèle réduit

Plot expérimental comparé à une modélisation continue et discrète.

- Couche de ballast de faible dimension (1*1*0,15 et 0,30 m)
- Appui sur un support rigide, efforts sur +sieurs éléments,
- $\rho_d(\text{foisonn}\acute{e}) = 1,51 \ t/m^3$, $\rho_d(\text{compact}\acute{e}) = 1,63 \ t/m^3$.

Modèle continu

• Hyp. : le ballast comme un milieu continu (CESAR-LCPC)

Détermination des paramètres d'amortissement de Rayleigh

 Analyse réponse dynamique linéaire du milieu par éléments finis suivant équation d'équilibre dynamique :

 $[M]\ddot{X}(t) + [C]\dot{X}(t) + [K]X(t) = F(t)$

- Façon de modéliser l'amortissement
 - \rightarrow formulation de Rayleigh : $[C] = \alpha[K] + \beta[M]$
 - ightarrow Amortissement $\eta = 2\xi = rac{lpha}{\omega} + eta \omega$

Modèlisation discrète

- En collaboration avec l'Ifsttar, code pour le calcul des milieux discrets (Dimnet 2002),
- Méthode de calcul de la famille des méthodes Contacts Dynamics (Dal-Pont and Dimnet 2004, Jean 99, Moreau 88),
- couche générée aléatoirement.

Couche granulaire modélisée

Caisson en bois de 1*1*0,15m instrumenté et modélisé

Couche granulaire modélisée avec plaque de répartition

Génération de la couche granulaire

- Couche générée aléatoirement,
- Agrégats tombant avec une distance au centre de 60 mm,
- Agrégats de 20 à 60 mm (librairie Huang, 2010).

Comparaison mesure et simulation discrète/continue

C1 - 15 cm

- Modèle discret plus proche de l'expér. que le modèle continu,
- pente plus forte modélisation continue.

Conclusions des expérimentations à grande échelle

- BDD sismique expérimentale très importante (nombre d'essais >900),
- Travail utile pour les mesures sismiques ferroviaires avec définition d'une méthodologie d'essais (24G, Scellement, écartement géophone de 15cm), Sismique = indicateur qualitatif de la compacité
 - Variation de 30 % de V_P ,
 - V2 = f (ρ),
 - V1 aussi mais moins visible, pb scellement.
- Compléments pour indicateur quantifiable de la compacité,
- Ballast \neq équations de milieu continu
 - Décroissance d'amplitude plus forte dans compacté pour certains cas,
 - Mode 1 courbe de dispersion peu visible.
- Mécanique des milieux granulaires non linéaire,

Conclusions des modèles réduits

- Résultats similaires aux planches à l'échelle 1
 - Ballast compacté pouvant amortir plus,
 - Grande variabilité des résultats suivant les contacts,
 - Visualisation de la non linéarité du ballast.
- Néanmoins V_P plus faibles 90 à 220 m/s au lieu de 220 à 300 m/s (élastomère ?),
- Paramétrage difficile de la modélisation continue,
- Modélisation discrète plus adaptée, néanmoins intégrer entrée du ballast.

Perspectives

Grande échelle

- Modélisation des courbes de dispersion théorique en poursuivant l'étude paramétrique,
- Crosscorrélation de bruit de fond sismique (LR de Nice, D. Mercerat)
- Réponse de la traverse en fonction de ρ et e

Temps (s) - Crosscorélation

Réponse de la traverse

Modèle réduit

- Modélisation continue avec des modèles d'amortissement type NCQ,
- Intégration dans le modèle discret la réponse de l'entrée du ballast.

Merci pour votre attention ! delphine.jacqueline@cerema.fr

Articles :

- D. Jacqueline, C. Fauchard, J-F. Semblat et J-P. Magnan, 2014, Propagation d'ondes sismiques dans le contrôle de compactage du ballast ferroviaire, Conférence internationale Georail à Paris (France),
- D. Jacqueline, S. Hemmati, G. Vinceslas et E. Dimnet, 2014, Mesure et simulation de la propagation de vibrations à travers une couche de ballast, Conférence internationale Georail à Paris (France),
- D. Jacqueline, E. Dimnet, S. Hemmati, G. Vinceslas, 2015, Numerical modelling and experimental measurment of the propagation of a mechanical signal through a ballast layer, Panamerican conference on soils mechanics and geotechnical engineering à Buenos Aires (Argentine).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶