

Simulation numérique de la propagation d'ondes dans les sols par une méthode éléments finis Galerkin discontinue

Nathalie Glinsky

IFSTTAR/GERS/SV - CEREMA/DTerMed/LN/SRS - INRIA Sophia Antipolis Méditerranée/EPI Nachos

Jeudi 4 Juin 2015

Jeudi 4 Juin 2015 1

Objectif général

- Simulation numérique de la propagation des ondes sismiques
- Problème direct, étude de l'aléa et des effets de site
 - ▷ rapports site/référence, amplification et fréquences concernées

- Méthodes numériques précises
 - ▷ milieux complexes
 - modèles de rhéologie (du plus simple au plus réaliste)

av

La méthode éléments finis Galerkin discontinue

- Reed and Hill (1973), problème de transport de neutron
- Equations de l'élastodynamique
 - > ADER flux décentrés, Käser and Dumbser, GJI (2006)
 - Saute-mouton flux centrés, Delcourte, Fezoui and Glinsky, ESAIM: Proc (2009)
- Méthode de type éléments finis
 - \triangleright Discrétisation du domaine en triangles/tétraèdres T (ou autre),
 - \triangleright Approximation de \vec{W} , \vec{W}_h , via une interpolation de Lagrange (ou autre)
- Méthode discontinue
 - ▷ Interpolation locale dans chaque cellule T_i , $L_{ij} \in P_p(T_i)$, polynômes de degré p de T_i

$$\vec{W}_{h|T_i} = \vec{W}_i(x, y, t) = \sum_{j=1}^N \vec{W}_{ij}(t) L_{ij}(x, y),$$

N degrés de liberté dans T_i , $N = \frac{(p+1)(p+2)}{2}$

• Flux aux interfaces

a١

Flux

La méthode éléments finis Galerkin discontinue

- Avantages des méthodes GD
 - Ordre élevé en espace (matrices de masse locales, facilement inversibles)
 - ▷ Flexibilité (*h-p* adaptivité, maillages, pas de temps local)

> Adaptées aux plateformes de calcul parallèlles

• Problèmes linéaires (en 2D)

 $\partial_t \vec{W} + A_x(\rho, \lambda, \mu) \partial_x \vec{W} + A_z(\rho, \lambda, \mu) \partial_z \vec{W} + B(...) \vec{W} = \vec{0}$

▷ P1 à P5, flux centrés, schéma saute-mouton (standard, ordre 4) ▷ ρ , V_p et V_s constants par élément

N. Glinsky ()

PARTIE I

PRISE EN COMPTE DE L'ATTENUATION

APPLICATION A I'ETUDE DES EFFETS DE SITE A NICE

Extrait de :

F. Peyrusse, N. Glinsky, C. Gélis and S. Lanteri [2014]

A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media - verification and validation in the Nice basin,

Geophys. J. Int., 199, 315-334.

3

(日) (周) (三) (三)

Introduction de l'atténuation du milieu

- Hypothèse d'un milieu linéaire élastique non adaptée
- Fonctions de transfert (rapport spectral surface/référence)

• Remplacer la loi de Hooke entre contraintes et déformations $\sigma = \lambda \operatorname{tr}(\varepsilon) \operatorname{Id} + 2\mu\varepsilon, \quad \varepsilon = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right)$

par une relation décrivant l'histoire de la déformation jusqu'à t

$$\sigma_{ij}(t) = \int_{-\infty}^{t} \phi_{ijkl}(t-\tau) \,\partial_{\tau} \varepsilon_{kl}(\tau) \,d\tau \,,$$

 ϕ tenseur des fonctions de relaxation

Introduction de l'atténuation du milieu

- Modèle de Maxwell généralisé (GMB, Emmerich & Korn, 1987)
- Relation σ - ε (convolution) \approx EDPs des fonctions anélastiques ξ^{I}
- L (3 à 8) fréquences de relaxation ω_l dans l'intervalle de fréquences, facteur de qualité Q constant, coefficients anélastiques Υ^l
- Equations (cas linéaire élastique l = 0)

$$\begin{cases} \rho \partial_t \mathbf{v} &= \nabla \cdot \sigma , \\ \partial_t \sigma &= \lambda \left(\nabla \cdot \mathbf{v} \right) \operatorname{Id} + \mu \left(\nabla \mathbf{v} + \nabla \mathbf{v}^T \right) - \sum_{l=1}^{L} \left(\lambda \Upsilon^{\lambda, l} \operatorname{tr}(\xi^l) \operatorname{Id} + 2\mu \Upsilon^{\mu, l} \xi^l \right) , \\ \partial_t \xi^l &= \omega_l (\nabla \mathbf{v} + \nabla \mathbf{v}^T) / 2 - \omega_l \xi^l, \quad l = 1, \dots, L . \end{cases}$$

- $\partial_t \vec{W} + A_x \partial_x \vec{W} + A_z \partial_z \vec{W} + B\vec{W} = \vec{0} \text{ avec } \vec{W} = \left(\vec{V}, \vec{\sigma}, \vec{\xi^1}, ..., \vec{\xi^L}\right)^t$, $\vec{V} = (v_x, v_y)^t$, $\vec{\sigma} = (\sigma_{xx}, \sigma_{yy}, \sigma_{xy})^t$ and $\vec{\xi^l} = (\xi'_{xx}, \xi'_{yy}, \xi'_{xy})^t$
- 3 L équations supplémentaires en 2D, 6 L en 3D

It av

Application au bassin de Nice

- Modèle de Nice (Bertrand et al., 2007)
 - > Topographie et milieu en profondeur, 10m de résolution
 - ho Bassin: $V_s \in$ [180;300] m/s, rocher : $V_s =$ 1000 m/s
 - ho~ Pas de données sur Q, $Q_{P,S} = V_{p,s}/10$
- Coupe 2D, maillage non structuré, 107 707 triangles (h=1m/4m)
 - ightarrow Milieu complexe \Longrightarrow maillage fin \Longrightarrow P1, L = 3 mécanismes
- Différences-finies (C. Gélis), $\Delta_{x,z} = 0.125$ m, 10^6 points, L = 8

- Stations fictives R1, R2, R3 et NLIB (station du RAP)
- Onde plane SV verticale, $f_c = 6.0$ Hz, $f_{max} = 12.0$ Hz

it av

Application au bassin de Nice

jt av

Comparaisons 1D/2D, hétérogène/homogène en NLIB

• Simulations sur 2 configurations 2D, 2 configurations 1D

- Bassin initial et version homogène (géométrie de fond de bassin)
- ▷ Colonnes 1D hétérogène et homogène (34 m épaisseur), ligne rouge
- \triangleright Pour le cas homogène, valeur moyenne $V_s = 300 \text{ m/s}$

Données réelles

- ▷ étude sur les effets de site à Nice (stage M. Oyomo Olinga, 2007)
- > enregistrements en 6 stations du Réseau Accélerométrique Permanent
- ho~ 14 séismes entre janv. 2000 et oct. 2006, magnitude 2.4 à 4.9
- ▷ référence pour rapports spectraux, station NBOR

av

Comparaisons 1D/2D, hétérogène/homogène en NLIB

N. Glinsky ()

Propagation d'ondes par une méthode GD

Jeudi 4 Juin 2015

11 / 2

Comparaisons simulations / mesures en NLIB

PARTIE II

PRISE EN COMPTE PRECISE

DE MILIEUX HETEROGENES ARBITRAIRES

Extrait de : D. Mercerat and N. Glinsky [2015] A nodal high-order discontinuous Galerkin method for elastic wave propagation in arbitrary heteogeneous media *Geophys. J. Int.*, **201**, 1099-1116.

3

- Méthodes d'ordre élevé pour des maillages plus grossiers
- L'hypothèse de propriétés constantes par élément est une sévère limitation
 - $\vartriangleright \mathsf{ milieu \ complexe \ } \longrightarrow \mathsf{ construction \ complexe \ du \ maillage}$
 - $\,\vartriangleright\,$ hétérogénéités de petites dimensions \longrightarrow maillages fins
 - $\vartriangleright\,$ schémas explicites en temps \longrightarrow petits pas de temps \longrightarrow temps de calcul élevé
- Objectifs : étendre avec peu de modifications la méthode GD
 - inclure des variations (gradient, saut) des propriétés du milieu à l'intérieur des éléments
 - > meilleure approximation du milieu hétérogène (gradient),
 - ▷ construction du maillage facilitée (saut),
 - ▷ temps de calcul de la simulation réduit.

av

Méthode GD pour des milieux hétérogènes

 Système vitesses-contraintes, milieu linéaire élastique $\partial_t \vec{W} + A_x(\rho, \lambda, \mu) \ \partial_x \vec{W} + A_z(\rho, \lambda, \mu) \ \partial_y \vec{W} = \vec{0},$

• Eviter
$$\int_{T_i} L_i^t \partial_{x/z} A_{x/z} \vec{W} dV \Rightarrow \int_{T_i} L_i (\partial_{x/z} L)_j L_k dV$$

(Castro et al., Geophys. J. Int., 182(1), 250-264, 2010)

Changement de variables sur les contraintes

$$\vec{\sigma} = (\sigma_{xx}, \sigma_{yy}, \sigma_{xy})^t \quad \rightarrow \quad \vec{\tilde{\sigma}} = \left(\frac{1}{2}(\sigma_{xx} + \sigma_{yy}), \frac{1}{2}(\sigma_{xx} - \sigma_{yy}), \sigma_{xy}\right)^t$$
$$\vec{W} = \left(\vec{V}, \vec{\sigma}\right)^t \quad \rightarrow \quad \vec{\tilde{W}} = \left(\vec{V}, \vec{\tilde{\sigma}}\right)^t$$

• Système équivalent en \tilde{W}

$$\Lambda(\rho,\lambda,\mu)\partial_t\vec{\tilde{W}}+\tilde{A}_x\partial_x\vec{\tilde{W}}+\tilde{A}_z\partial_z\vec{\tilde{W}}=\vec{0}$$

Ã_x et Ã_z constantes, Λ(ρ, λ, μ) = diag (ρ, ρ, 1/(λ+μ), 1/μ)
Extension limitée au calcul de matrices de masse modifiée sur T_i

rt av

15 / 23

Méthode GD pour des milieux hétérogènes

• Matrices de masse modifiées

$$\int_{\mathcal{T}_i} L_k^t \wedge \partial_t \vec{\tilde{W}} \, dV = \sum_{j=1}^N d_t \vec{\tilde{W}}(t) \int_{\mathcal{T}_i} L_k^t \wedge L_j \, dV.$$

- Calcul des matrices de masse par des règles de quadratures
 - *N_q* points de quadratures et poids donnés par la librairie Dunavant
 ▷ Précision des formules de Dunavant

- Matrices calculées à l'étape d'initialisation
- Stockage de l'inverse de 3 matrices par triangle

av

Application à une couche superficielle

N. Glinsky ()

Propagation d'ondes par une méthode GD

Jeudi 4 Juin 2015

- Bassin de géométrie simplifiée
 - ▷ bassin : $\rho = 2000 \text{ kg/m}^3$, gradient $V_s \in [500, 900] \text{ m/s}$, $\nu = 0.25$
 - \triangleright rocher: $\rho = 2600 \text{ kg/m}^3$, Vs=2600 m/s, $\nu = 0.25$
 - ▷ rangée de capteurs surfaciques, en particulier en bord de bassin
- Source explosive à environ 3000m de profondeur
 - \triangleright Ricker, $f_c = 4$ Hz, $f_{max} = 10$ Hz
 - \triangleright Min_{λ} \simeq 50m
- Maillage contenant l'interface bassin/rocher
 - \triangleright Maillage 5562 triangles, h=50m en surface, h=100m en fond de bassin
- Comparaisons Specfem (quadrangles)/DG (triangles)
- Comparaisons DG nouvelle approche/DG propriétés const./triangle

• Le maillage suit l'interface bassin/rocher

- Le maillage suit l'interface bassin/rocher
- Zoom au capteur situé en bord de bassin

• Le maillage ne suit plus l'interface bassin/rocher

N. Glinsky ()

Propagation d'ondes par une méthode GE

1/2

it av

- Le maillage ne suit plus l'interface bassin/rocher
- Zoom au capteur situé en bord de bassin

Merci de votre attention

Nathalie Glinsky nathalie.glinsky@cerema.fr Cerema DTerMed Laboratoire de Nice Service Risque Sismique 56 Bd Stalingrad 06359 Nice cedex 4

it av