

Direction territoriale Est

Mesures de propagation acoustique et vibratoire à grande distance sur ligne ferroviaire

Patrick Demizieux, Franck Péridon, Philippe Glé, Guillaume Dutilleux, Nicolas Goze, Laurent Brendel, Sébastien Vigneron

Ifsttar Nantes, 4 et 5 Juin 2015

Impact des infrastructures de transport terrestres

- Méthode de prévision du bruit et validité
- -> NMPB 1996, NMPB 2008
- -> Nombreuses campagnes expérimentales sur infras routières, mais sans bâti
- -> Seulement deux campagnes sur infras ferroviaires
- Quid de l' impact vibratoire?
- -> Pas de méthode de prévision approche généralement expérimentale
- -> Problématique des basses fréquences (bruit et vibration)
- Des campagnes particulièrement lourdes
- -> Localisation du site (choix, accès, énergie)
- -> Durée (installation, instrumentation, démontage)
- -> Capteurs nombreux et déployés à grande distance (NMPB~800m)
- -> Synchronisation, transport et stockage des enregistrements

Objectif de l'étude

Etude d'impact « test » de propagation acoustique et vibratoire d'une infrastructure ferroviaire en zone bâtie

Avec:

- Synchronisation généralisée des capteurs
- Déclenchement automatique des enregistrement
- Stockage des données centralisé
- Enregistrement vidéo
- Alimentation électrique autonome des points distants
- Dépouillement automatisé pour l'évaluation des sens, vitesses et longueurs de trains

- Contexte et objectif de l'étude
- Présentation de la campagne
 - Le site
 - Capteurs et centrales d'acquisition
 - Déclenchement et synchronisation
- Exploitation des résultats
 - Caractérisation des passages
 - Données « bruit »
 - Données « vibration »
- Conclusions et Perspectives

- Contexte et objectif de l'étude
- Présentation de la campagne
 - Le site
 - Capteurs et centrales d'acquisition
 - Déclenchement et synchronisation
- Exploitation des résultats
 - Caractérisation des passages
 - Données « bruit »
 - Données « vibration »
- Conclusions et Perspectives

Présentation de la campagne

Le site

- -> Laboratoire de Strasbourg
 - Voie basse vitesse sur remblai
 - Diversité de trains (frets, voyageurs, motrices)
 - Site bâti et calme
 - Proximité et accès

-> Mesures réalisées du 11 au 13/06 2014 (pendant les grèves...)

Présentation de la campagne

Capteurs et centrales d'acquisition

Bruit

- 6 microphones (ICP et 200V B&K)
- Alimentation: Oros, Gras,
 Phantom, sonomètre
- Distances: 0-90m

Vibrations

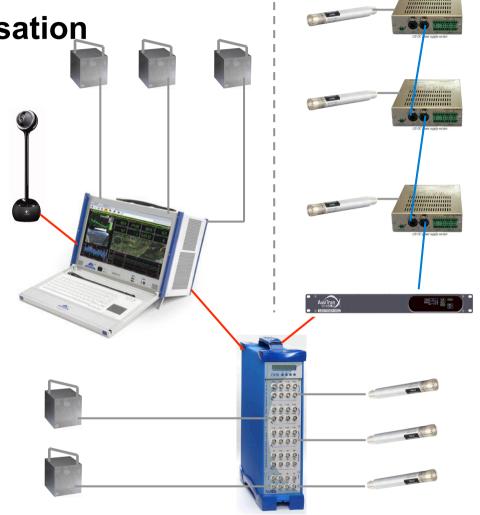
- 5 capteurs 3D, 2Hz
- Alimentation: Dewetron, Oros
- Distances: 0-67m

Présentation de la campagne

Déclenchement et synchronisation

Déclenchement sur seuil microphone

- 1 microphone par sens en bord de voie
- Pré-trigger
- Macro de réarmement


Synchronisation des enregistrements

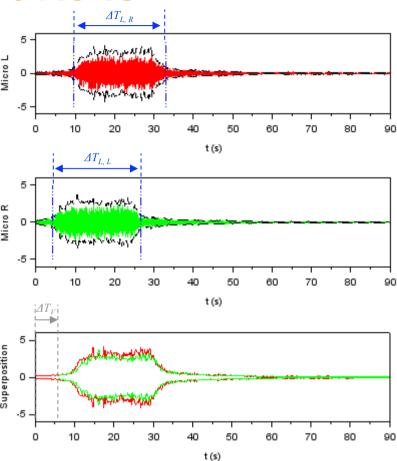
- Liaison filaire par bus audio Ethersound (Auvitran)
- -> Latence faible et maîtrisée, jusqu'à 64 voies en cascade, avec 100m entre boitiers (ou plus si fibre)

Couplage Ethersound/Oros

Couplage Dewesoft/Oros

JTAV 2015 – Propagation acoustique & vibratoire
Webcam sur Dewesoft

- Contexte et objectif de l'étude
- Présentation de la campagne
 - Le site
 - Capteurs et centrales d'acquisition
 - Déclenchement et synchronisation
- Exploitation des résultats
 - Caractérisation des passages
 - Données « bruit »
 - Données « vibration »
- Conclusions et Perspectives


Caractérisation des passages

- Evaluation sens et vitesse
 - Utilisation micros bord de voie
 - Similitude des signaux
 - Possibilité de recalage temporel par minimisation
 - Travail sur l'enveloppe |p_{max}|_{0.2s}

$$V = \frac{\Delta L}{\Delta T_{V}}$$

- Evaluation de la longueur des trains
 - Recherche des fronts montants et descendants
 - Vérification cohérence L/R

•
$$L = V \times \overline{\Delta T_L}$$

Caractérisation des passages

Polyvalence du script

- Application à 39 passages
- Trains stables ou à profil variable
- Trains courts ou longs

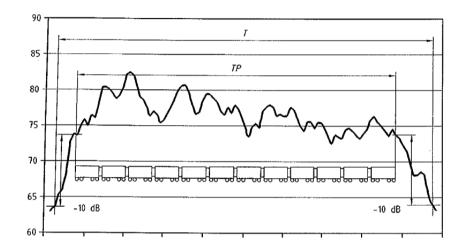
Fiabilité des résultats

- Sens: aucune erreur (vérif caméra)
- Vitesse: perspective de confrontation de la technique avec radar pour validation
- Longueur: précision ~5% pour TGVs

5-	Passage	Estimation longueur	Type train	Nb wagons	Туре			\neg
_ icht/	_	(m)	· ·	+ mot	wagons			
Nica Car	1	384	Fret (2 motrices)	17	longs	1		***
.5	2	389	Fret (1 m otrice)	22	courts	1		
3 1 10 F	3	411	Fret (1 m otrice)	22	courts	70	80	90
5	4	462	Fret (1 m otrice)	26	très longs	l —		\neg
i [5	943	Fret (1 m otrice)	26	très longs]		
E o Kynami	6	577	Fret (1 m otrice)	35	moyens			
	7	86	Voyageurs	3	moyens]		
-5 10 [8	21	Fret (2 motrices)	2		70	80	ᆛ
	9	554	Fret (1 m otrice)	33	moyens			
5 -	10	172	TGV	1 rame	-			
Superposition	11	402	TGV	2 rames	-			400
Super	12	198	TGV	1 rame	-			
-5 -10	13	526	Fret (2 motrices)	16	très longs	70	80	-
0 10	14	16	Fret (1 m otrice)	1	-	70	80	90
	15	352						
5 - !!	16	29	Fret (1 m otrice)	1	•			\neg
	17	577	Fret (1 m otrice)	35	moyens		Longer day	***
Micro L	18	431	Fret (1 m otrice)	24	moyens	* groups	According to	100
.5-	19	272	Fret (1 m otrice)	17	moyens			
0 10	20	451	Fret (1 m otrice)	22	courts	70	80	90
5 - 11	21	28	Fret (1 m otrice)	1	-	—	1	\neg
ω] L	22	531		o trop sombre				
ğ 0	23	9	Fret (1 m otrice)	1	-	1000	+	
	24	41	Fret (1 m otrice)	1	-			
0 10	25	604	Fret (1 m otrice)	35? (sombre)	moyens	70	80	90
5 -	26	334	Fret (1 m otrice)	20? (sombre)	très longs	l —		\neg
<u> </u>	27	641	Fret (1 m otrice)	33	moyens			
Superposition	28	217	TGV	1 rame	-	******		ACTIVATION OF THE PARTY.
" 4 L	29	63	Fret (2 motrices)	2	-			
-5 - 10	30	47	Fret (2 motrices)	2	-	70	80	-
L	31	206	TGV	1 rame	-			
 	32	528	Fret (1 m otrice)	21	longs			
	33	26	Fret (1 m otrice)	1	-			
L	34	190	TGV	1 rame	-			
L	35	547	Fret (1 m otrice)	35	moyens			
L	36	209	TGV	1 rame	-			
 	37	387	Fret (1 m otrice)	25	moyens			
 	38	285	Fret (1 m otrice)	19	moyens			
L	39	80	Fret (2 motrices)	3	moyens	J		

Limites de la méthode

Cas des trains lents

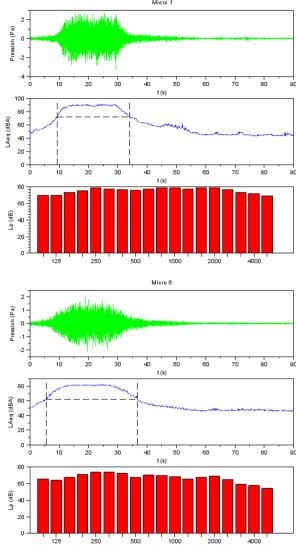

 Variations de vitesse éventuelles JTAV 2015 – Propagation acoustique & vibratoire ferroviaire

Données « bruit »

Objectif

- Dépouillement/sauvegarde automatisés
- Calcul du LAeq_{100ms}
- Calcul du temps d'exposition (TEL [ISO 3095])
- Calcul du niveau en 1/3 d'octaves

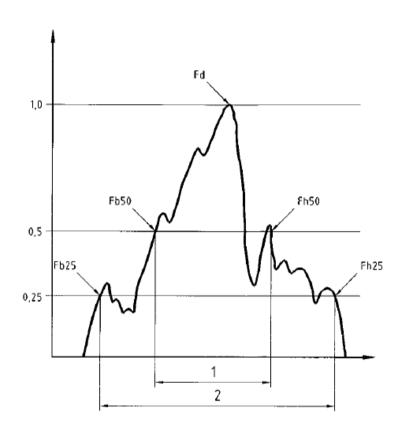

Méthode


- Chargement dans Scilab
- Application filtres sur signaux temporels (Toolboxes)

Données « bruit »

Validité des résultats

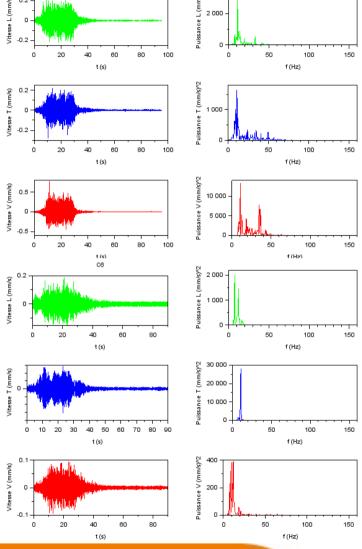
- LAeq: écart /dBTrait<0.5dB
- Temps d'exposition: Problèmes des bruits parasites
- Possibilité de fenêtrer l'analyse à partir des données (vitesse/ longueur train)


Données « vibration »

Objectif

- Dépouillement/sauvegarde automatisés
- Calcul de Vmax
- Calcul de Fd [NF E 90 020]
- Calcul des plages [Fb50; Fh50]
 et [Fb25; Fh25] [NF E 90 020]

Méthode


- Chargement dans Scilab
- Filtrage PB 300Hz Butterworth
- Recherche maximums
- Calcul FFT
- Evaluation Fd et plages associées

Données « vibration »

Validité des résultats

 Comparaison/Dewesoft: Résultats identiques pour Vmax, petites différences pour les fréquences (lecture manuelle curseur Dewesoft)

- Contexte et objectif de l'étude
- Présentation de la campagne
 - Le site
 - Capteurs et centrales d'acquisition
 - Déclenchement et synchronisation
- Exploitation des résultats
 - Caractérisation des passages
 - Données « bruit »
 - Données « vibration »
- Conclusions et Perspectives

Conclusions & Perspectives

- Conclusions
 - Une campagne fructueuse
 - Couplage de plusieurs centrales
 - Deux technologies de c o m m u n i c a t i o n (analogiques, bus audio)
 - Déclenchement automatique sur seuil
 - Une automatisation validée en grande partie
 - Caractérisation des passages
 - Paramètres acoustiques
 - Paramètres vibratoires

- Perspectives et améliorations
 - Matériel
 - A limentation en campagne?
 - Conditionnement signaux pour Ethersound
 - Caméra infrarouge
 - Enregistreurs synchronisés par timecode
 - Transmission des données en temps réél
 - > Validation dépouillement:
 - Mesures de vitesse avec un radar
 - Nouvelle campagne

Merci de votre attention...

...des

QUESTIONS? Patrick Demizieux, Franck Péridon, Philippe Glé, Guillaume Dutilleux

CEREMA, PCI Acoustique & Vibrations

philippe.gle@cerema.fr