The TLM method	Single scattering	Multiple scattering	Conclusion
00	000	0000	0000

Simulations of multiple scattering by tree trunks using the TLM method

Pierre Chobeau^{*a*,*b*}, J. Picaut^{*a*}, D. Ecotière^{*b*}, G. Dutilleux^{*b*}.

^aIfsttar/LAE (Laboratoire d'Acoustique Environnementale) - ^bCerema/ERA 32 Acoustique

CFA Poitiers - April 24, 2014

▲□▶ ▲圖▶ ▲토▶ ▲토▶ - 토

The TLM method	Single scattering	Multiple scattering	Conclusion
00	000	0000	0000

1 The Transmission Line Matrix (TLM) method

- General principle of the TLM method
- TLM formulation for heterogeneous and dissipative media

2 Scattering of a plane wave by a single cylinder

- Theory
- Principle and geometries
- Comparison between analytical and numerical results

3 Multiple scattering

- Geometry of the simulations
- Distribution process for the scatterers locations
- Theory from Twersky's average wave-functions
- Comparison between analytical solutions and the TLM results

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ─

The TLM method	Single scattering	Multiple scattering	Conclusion
00	000	0000	0000

1/. The Transmission Line Matrix (TLM) method

The	TLM	method	
00			

Single scattering

Multiple scattering

Conclusion

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

4 / 19

General principle of the TLM method

Huygens principle

Every point of a wave front may be considered the source of secondary wavelets that spread out in all directions with a speed equal to the speed of propagation of the waves.

TLM variables for 2D homogeneous and non-dissipative media

• Incident and scattered pulses:

$${}_{t}\mathbf{I}_{(i,j)} = [{}_{t}I^{1}; {}_{t}I^{2}; {}_{t}I^{3}; {}_{t}I^{4}]_{(i,j)}^{T}$$

$${}_{t}\mathbf{S}_{(i,j)} = [{}_{t}S^{1}; {}_{t}S^{2}; {}_{t}S^{3}; {}_{t}S^{4}]_{(i,j)}^{T}$$

• Scattering process:

$${}_{t}\mathbf{S}_{(i,j)} = {}_{t}\mathbf{D}_{(i,j)} {}_{t}\mathbf{I}_{(i,j)}$$

TLM for heterogeneous and dissipative media

• Incident and scattered pulses:

$${}_{t}\mathbf{I}_{(i,j)} = [{}_{t}I^{1}; {}_{t}I^{2}; {}_{t}I^{3}; {}_{t}I^{4}; {}_{t}I^{5}]_{(i,j)}^{T}$$
$${}_{t}\mathbf{S}_{(i,j)} = [{}_{t}S^{1}; {}_{t}S^{2}; {}_{t}S^{3}; {}_{t}S^{4}; {}_{t}S^{5}]_{(i,j)}^{T}$$

• Scattering process:

$$\mathsf{S} = \mathsf{D}(\eta, \zeta).\mathsf{I}$$

Pierre Chobeau - CFA 2014

The TLM method		Single scattering	Multiple scattering	Conclusion
00		000	0000	0000
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

TLM formulation for heterogeneous and dissipative media

Connexion laws

$$t + \delta t I_{(i,j)}^{1} = t S_{(i-1,j)}^{2},$$

$$t + \delta t I_{(i,j)}^{2} = t S_{(i+1,j)}^{1},$$

$$t + \delta t I_{(i,j)}^{3} = t S_{(i,j-1)}^{4},$$

$$t + \delta t I_{(i,j)}^{4} = t S_{(i,j+1)}^{3},$$

$$t + \delta t I_{(i,j)}^{5} = t S_{(i,j)}^{5}.$$

Acoustic pressure

$${}_{t}p_{(i,j)} = \frac{2}{\eta_{(i,j)} + \zeta_{(i,j)} + 4} \left[\sum_{n=1}^{4} {}_{t}I_{(i,j)}^{n} + \eta_{(i,j)} {}_{t}I_{(i,j)}^{5} \right]$$

TLM propagation scheme and wave equation

• TLM scheme for heterogeneous and dissipative network:

$$t+\delta t P_{(i,j)} = \frac{2}{\eta_{(i,j)} + \zeta_{(i,j)} + 4} \left[t P_{(i+1,j)} + t P_{(i-1,j)} + t P_{(i,j+1)} + t P_{(i,j-1)} + \eta_{(i,j)} t P_{(i,j)} \right] - \frac{\eta_{(i,j)} - \zeta_{(i,j)} + 4}{\eta_{(i,j)} + \zeta_{(i,j)} + 4} t - \delta t P_{(i,j)}$$

• Wave equation:

$$\left[\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) - \frac{\eta + 4}{2}\frac{\delta t^2}{\delta l^2}\frac{\partial^2}{\partial t^2} - \zeta\frac{\delta t}{\delta l^2}\frac{\partial}{\partial t}\right] t p_{(i,j)} = 0$$

• Celerity correction:

$$c_{\mathsf{TLM}} = \sqrt{rac{2}{\eta+4}} \ c, \ {
m with} \ c = rac{\delta l}{\delta t}$$

Pierre Chobeau - CFA 2014

 $\mathcal{D}\mathcal{Q}\mathcal{O}$

The TLM method	Single scattering	Multiple scattering	Conclusion
00	000	0000	0000

2/. Scattering of a plane wave by a single cylinder

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Schematic of wave propagation in the vicinity of a cylinder.

Analytical solutions [1]:Incident plane wave: $p_i = P_0 \sum_{m=0}^{\infty} (2 - \delta_{m0})i^m J_m (kr) e^{im\varphi} e^{i\omega t},$ Scattered pressure: $p_s = P_0 \sum_{n=0}^{\infty} A_n H_n^{(1)} (kr) e^{in\varphi} e^{i\omega t},$ Boundary condition at r = a: $\frac{i}{k\rho c} \frac{\partial}{\partial r} (p_i + p_s) = \frac{-1}{Z} (p_i + p_s),$ Scattering coefficients: $A_n = -\frac{(2 - \delta_{n0})i^n[iJ_n'(ka) + (\rho c/Z)J_n(ka)]}{iH_n^{(1)'}(ka) + (\rho c/Z)H_n^{(1)}(ka)}.$

[1] Bruneau, M.; Hermès (Ed.) Manuel d'acoustique fondamentale, Hermès (1998) 🗗 🕨 🛛 🚊 👘 🖉 🔍 🔿 🔍 💎

The TLM method	Single scattering	Multiple scattering	Conclusion
00	000	0000	0000
Principle and geome	tries		

TLM simulation of plane wave scattered by a circular scatterer.

Scattered level pressure

$$L_{\rm scat} = 10 \log_{10} \left(\frac{p_{s,\rm rms}}{p_{i,\rm rms}} \right)$$

Simulations' geometrical setup.

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶

590

Ð,

The TLM n	nethod	Single scattering	Multiple scattering	Conclusion
00		000	0000	0000

Comparison between analytical solutions and the TLM results

Pierre Chobeau - CFA 2014

The TLM method	Single scattering	Multiple scattering	Conclusion
00	000	0000	0000

3/. Multiple scattering

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Quantity of interest:

The mean pressure density referenced to an 100 feet long scatterers array [4]:

$$EL = 10 \log_{10} \left(\frac{|\psi_t|^2}{|\psi_{t,100ft}|^2} \right).$$

^[4] Embleton, T.; Scattering by an array of cylinders as a function of surface impedance, 🗗 Acoust Soc. Am 40, 667 670 (1966). 🔗 🔍 🖓

The TLM method	Single scattering	Multiple scattering	Conclusion
00	000	000	0000
	C 11 11		

Distribution process for the scatterers locations

Assessment of the scatterers locations:

Ripley's funct.[2]: $K(r) = \frac{1}{W} \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq i}^{N} k_{ij}$, Besag's funct.[3]: $L(r) = \sqrt{\frac{K(r)}{\pi}} - r$.

^[2] Ripley B.; The second order analysis of stationary point process, Journal of applied probability, 13, 255-266 (1976).

^[3] Besag J.; Contribution to the discussion of Dr Ripley's paper, Journal of the royal statistical society, B 39, 193-195 (1977). 🚊 🔗 🔍 🔿

The TLM meth	od Single scattering	Multiple scattering	Conclusion
00	000	0000	0000
Theory	from Twersky's average	wave-functions	
Vari	ables of interest [4,5]:		
	Average wave transmitted:	$T=rac{2W}{k}\sum_{-\infty}^{\infty}A_n,$	

Average wave reflected:

Scattering coefficients:

$$A_n = -\frac{iJ_n(kr) + (Z/\rho c)J'_n(kr)}{iH_n(kr) + (Z/\rho c)H'_n(kr)},$$

 $R=rac{2N}{k}\sum_{-\infty}^{\infty}(-1)^nA_n$,

Complex propagation constant:

Balance between transmitted and back-scattered field : Internal wave field:

Transmitted wave field:

$$\gamma = \sqrt{(k - iT)^2 + R^2},$$

$$q = (T + ik - i\gamma)/R$$
,

$$\psi_i = (1-q) \frac{e^{i\gamma x} + qe^{-i\gamma(x-2d)}}{1-q^2 e^{i2\gamma d}},$$

$$\psi_t = (1-q^2) rac{e^{i(\gamma-k)d}}{1-q^2 e^{i2\gamma d}}.$$

^[4] Embleton, T.; Scattering by an array of cylinders as a function of surface impedance, J. Acoust. Soc. Am., 40, 667-670 (1966).

^[5] Twersky, V.; On scattering of waves by random distributions. I. Free space scatterer formalism, 🗗 Math. Phys., 3,700-715(1962). 🔗 🔍 💎

The TLM method	Single scattering	Multiple scattering	Conclusi
00	000	000	0000
Comparison between	analytical solutions a	nd the TLM results	

Figure: Attenuations calculated with a reference domain where $Wa = 10^{-2} \text{m}^{-1}$ for a scatterers domain where $Wa = 2.10^{-2} \text{m}^{-1}$ (black points), and a scatterers domain where $Wa = 3.10^{-2} \text{m}^{-1}$ (red crosses) in comparison to the corresponding theoretical attenuations.

Ξ

The TLM method	Single scattering	Multiple scattering	Conclusion
00	000	0000	0000

4/. Conclusion and future work

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ● ●

The TLM method	Single scattering	Multiple scattering	Conclusion
00	000	0000	●000
Conclusion			

Validations of the TLM method for 2D scattering cases

- scattering of a plane wave by a perfectly rigid circular scatterer,
- multiple scattering by randomly located circular scatterers:

 → scatterers locations related to forests' spatial structure analysis.

Future work on 3D cases with impedance plane and cylinders

- single scattering of a cylinder placed normal to an impedance plane:
 - analytical analysis from M. Swearingen semi-analytical model [6],
 - measurements on scale models with reflecting and felt-covered ground.
- multiple scattering from cylinders placed normal to an impedance plane:
 - measurements on scale models for six configurations:

 → three different placements (periodical aligned, periodical in staggered-row, random),
 - \rightarrow two different ground impedances (rigid and felt-covered grounds).

[6] Swearingen M., Swanson D.; A numerical model for point source scattering from an impedance cylinder placed normal to an impedance ground, *Acta Acustica*, **98**, 523-533 (2012). $\equiv \sqrt{2} \sqrt{2}$

[6] Swearingen M., Swanson D.; A numerical model for point source scattering from an impedance cylinder placed normal to an impedance ground, *Acta Acustica*, **98**, 523-533 (2012).

300

Frequency (Hz)

400

-40

100

TLM simulations

200

Simulations of multiple scattering by tree trunks using the TLM method

600

700

800

900 1000

500

The TLM method	Single scattering	Multiple scattering	Conclusion
00	000	0000	0000

Thanks for your attention

Simulations of multiple scattering by tree trunks using the TLM method

Pierre Chobeau^{a,b}, J. Picaut^a, D. Ecotière^b, G. Dutilleux^b.

^aIfsttar/LAE (Laboratoire d'Acoustique Environnementale) - ^bCerema/ERA 32 Acoustique

CFA Poitiers - April 24, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶

E

SQ (P