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General TLM principle

Huygens principle

Every point of a wave front may be considered the source of secondary wavelets that spread
out in all directions with a speed equal to the speed of propagation of the waves.

TLM variables for 2D homogeneous and non-dissipative media
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pulses at the node (i, j) and at

the time t for an homogeneous and non dissipative medium.

Incident and scattered pulses:

t I(i,j) = [ t I 1; t I 2; t I 3; t I 4]T
(i,j)

t S(i,j) = [ t S1; t S2; t S3; t S4]T
(i,j)

Scattering process:

t S(i,j) = t D(i,j) t I(i,j)

TLM for heterogeneous and dissipative media
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Additional branches for acoustic propagation in an
heterogeneous and dissipative medium (2D).

Incident and scattered pulses:

t I(i,j) = [ t I 1; t I 2; t I 3; t I 4; t I 5]T
(i,j)

t S(i,j) = [ t S1; t S2; t S3; t S4; t S5]T
(i,j)

Scattering process:

S = D(η, ζ).I
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Scattering process

Scattering process for 2D transmission line network

t I 1
(i,j)

y
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R =
ZT − ZL

ZT + ZL

T = 1 +R =
2ZT

ZT + ZL

ZT impedance of the termination,

ZL impedance of the line.

The scattering matrix:

t D(i,j) =
1

2
t


R T T T
T R T T
T T R T
T T T R


(i,j)

. (1)

Scattering relation:

tS(i,j) = tD(i,j) t I(i,j) , (2)
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TLM for heterogeneous and dissipative media

Acoustic pressure

tp(i,j) =
2

η(i,j) + ζ(i,j) + 4

[
4∑

n=1

t I
n
(i,j) + η(i,j) t I

5
(i,j)

]
Connexion laws

t+δt I 1
(i,j) = t S2

(i−1,j),

t+δt I 2
(i,j) = t S1

(i+1,j),

t+δt I 3
(i,j) = t S4

(i,j−1),

t+δt I 4
(i,j) = t S3

(i,j+1),

t+δt I 5
(i,j) =t S5

(i,j).

TLM propagation scheme and wave equation

TLM scheme for heterogeneous and dissipative network:

t+δt p(i,j) =
2

η(i,j) + ζ(i,j) + 4

[
t p(i+1,j) + t p(i−1,j) + t p(i,j+1) + t p(i,j−1) + η(i,j) t p(i,j)

]

−
η(i,j) − ζ(i,j) + 4

η(i,j) + ζ(i,j) + 4
t−δt p(i,j)

Wave equation:[(
∂2

∂x2
+

∂2

∂y 2

)
−
η + 4

2

δt2

δl2

∂2

∂t2
− ζ

δt

δl2

∂

∂t

]
t p(i,j) = 0

Celerity correction:

cTLM =

√
2

η + 4
c, with c =

δl

δt
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Absorbing conditions for the TLM method

Boundary conditions

Real impedance boundary condition [1],

Boundary operators [2, 3].

Absorbing layers

Dissipative scattering matrix [4, 1],

Matched connexion laws [5, 6],

Perfectly matched layer (PML)
⇒ only through FDTD calculation [3].
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Boundary conditions

Propagation domain

of interest

Ideal infinite propagation domain.

Still no rigorous PML implementation for the TLM method in acoustics.

[1] Hofmann et al., Simulation of outdoor sound propagation with a transmission line matrix method,Appl. Acoust., 2007.

[2] El-Masri et al., Vocal tract acoustics using the transmission line matrix (TLM) method, ICSLP, 1996.

[3] Porti et al., TLM methods and acoustics, Int. J. Numer. Model., 2001.

[4] Kagawa et al., Discrete Huygen’s model approach to sound wave propagation, J. Sound Vib., 1998.

[5] de Cogan et al., Transmission Line Matrix in Computational Mechanics, Taylor and Francis, 2006.

[6] Guillaume, Application of the TLM method for acoustic simulation in urban area, Phd Thesis, 2009.
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The PML for acoustics in 2D Cartesian coordinate system

Mass conservation:

Momentum equations:

∂g(x, t)

∂t
+ c2

0

∂vx

∂x
+ σx g(x, t) = 0 ,

∂h(y, t)

∂t
+ c2

0

∂vy

∂y
+ σy h(y, t) = 0 ,

∂vx

∂t
+
∂p

∂x
+ σx vx = 0 ,

∂vy

∂t
+
∂p

∂y
+ σy vy = 0 ,

where the acoustic pressure is split:
p(x, y, t) = g(x, t) + h(y, t),

and σ = σx + σy .

∂2p(x, y, t)

∂t2
− c2

0

(
∂2p(x, y, t)

∂x2
+
∂2p(x, y, t)

∂y2

)
+ 2σ

∂p(x, y, t)

∂t
+ σ

2p(x, y, t) = 0

σ(i,j) = σmax

(
eAL − x(i,j)

eAL

)β
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Identification of the TLM and PML schemes

PML scheme discretized with the 1st order centered finite differences:

t+δt p(i,j) =
1

2

1

(1 + σ(i,j)δt)

[
t p(i+1,j) + t p(i−1,j) + t p(i,j+1) + t p(i,j−1) − 2σ2

δt2
t p(i,j)

]

−
1− σ(i,j)δt

1 + σ(i,j)δt
t−δt p(i,j)

TLM scheme for heterogeneous and dissipative network:

t+δt p(i,j) =
2

η(i,j) + ζ(i,j) + 4

[
t p(i+1,j) + t p(i−1,j) + t p(i,j+1) + t p(i,j−1) + η(i,j) t p(i,j)

]

−
η(i,j) − ζ(i,j) + 4

η(i,j) + ζ(i,j) + 4
t−δt p(i,j)

Terms identification

2

η + ζ + 4
=

1

2

1

1 + σδt
, (5a)

2η

η + ζ + 4
= −

σ2δt2

1 + σδt
, (5b)

η − ζ + 4

η + ζ + 4
=

1− σδt

1 + σδt
, (5c)
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The three approximate PML formulations

First set of solutions
from eqs. (5a) and (5b)

η = −2σ2
δt2

ζ = 4σδt − 2σ2
δt2

Second set of solutions
from eqs. (5b) and (5c)

η = −
4σ2δt2

2 + σ2δt2

ζ =
8σδt

2 + σ2δt2

Third set of solutions
from eqs. (5a) and (5c)

η = 0

ζ = 4σδt
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The three approximate PML formulations

First set of solutions
from eqs. (5a) and (5b)

η = −2σ2
δt2

ζ = 4σδt − 2σ2
δt2

Second set of solutions
from eqs. (5b) and (5c)

η = −
4σ2δt2

2 + σ2δt2

ζ =
8σδt

2 + σ2δt2

Proportional evolution of η and ζ

(a) Heterogeneity and (b) dissipation terms as a function of the absorbing layer thickness Nλ , for three polynomial gradings.
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The three approximate PML formulations

Third set of solutions
from eqs. (5a) and (5c)

η = 0

ζ = 4σδt

no heterogeneity ⇒ purely dissipative

This set of solutions is equivalent to purely dissipative TLM network.

TLM dissipative propagation scheme:

t+δt p(i,j) =
1

2

1

1 + σδt

[
t p(i+1,j) + t p(i−1,j) + t p(i,j+1) + t p(i,j−1)

]
−

1− σδt

1 + σδt
t−δt p(i,j).

Lossy wave equation:

∂2p(x, y , t)

∂t2
− c2

0

(
∂2p(x, y , t)

∂x2
+
∂2p(x, y , t)

∂y 2

)
+ 2σ

∂p(x, y , t)

∂t
= 0.
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Assessment of the absorbing layers

Mean error level

error(x , y) = 10 log10

∑T
t=0 |pff(x , y , t)− p(x , y , t)|2∑T

t=0 |pff(x , y , t)|2

Geometrical configuration of
the numerical simulations

x

y

x

y

Propagation domain (D0)

Test
area

S

Computational domain implemented to assess the
performances of an absorbing layer inside the test area
(green square).

Source signal

pS(x , y , t) = 10 sin(2πft)× wkr

Gaussian impulse signal (a) ; signal spectrum (b).
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Mean error level
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Geometrical configuration of
the numerical simulations

x
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Computational domain implemented to assess the
performances of an absorbing layer inside the test area
(green square).
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Mean error results for the first and second set of solutions
First set of solutions:

Mean error function level (dB) inside the test area for an absorbing layer thickness eAL = 40nodes (Nλ = 2, f = 100 Hz): (a)
first approximate PML formulation ; (b) Guillaume’s matched connexion law.

Second set of solutions:

Mean error function level (dB) inside the test area for an absorbing layer thickness eAL = 40nodes (Nλ = 2, f = 100 Hz): (a)
second approximate PML formulation ; (b) Guillaume’s matched connexion law.
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Mean error results for the third set of solutions
Third set of solutions with eAL = 40nodes:

Mean error level (dB) inside the test area for an absorbing layer thickness: eAL = 40nodes ⇔ Nλ = 2, f = 100 Hz: (a)
third approximate PML formulation ; (b) Guillaume’s matched connexion law.

Third set of solutions with eAL = 60nodes:

Mean error level (dB) inside the test area for an absorbing layer thickness: eAL = 60nodes ⇔ Nλ = 3, f = 100 Hz: (a)
third approximate PML formulation ; (b) Guillaume’s matched connexion law.
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Conclusions

From the results:

Negative heterogeneity fluctuation for the first and second
approximate PML formulations induces a mismatching of the
absorbing layer,

The third formulation is the most efficient for thin layers:
⇒ this approach has been related to the lossy wave equation (i.e.
simplified PML wave equation).

Outlook:

Further investigation on the purely dissipative formulation:
⇒ split the scattering matrix to treat only the main propagation axis
(Split-Field attenuation),

Combination of the purely dissipative network and the empirical
matched connexion laws.
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Scattering process

Scattering process for 2D transmission line network
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Condtion on σ to satisfy the whole system

From equation (5a) the following equality can be written:

η + ζ + 4 = 4(1 + σδt), (8)

which, combined to equation (5c) is rewriten as:

η − ζ + 4

η + ζ + 4
=

1− σδt − σ2δt2

1 + σδt
. (9)

If relation (9) is related to equation (5c), then the following condition
should be satisfied: σ2δt2 << 1− σδt. This induces the following
inequality:

σ2δt2

1− σδt < ε, (10)

where ε should be minimized. Thus, the maximum value for the PML
attenuation factor σmax is set as a function of the variable ε:

σ <
1

2δt
(
√
ε2 + 4ε− ε) . (11)
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Matched connexion laws

F(i,j) = (1 + ε)− exp

[
−

(x(i,j) − eAL)2

A

]

A = −
e2

AL

ln ε

De Cogan’s approach

t+δt I 1
(i,j) = F(i,j) × t S2

(i−1,j),

t+δt I 2
(i,j) = F(i,j) × t S1

(i+1,j),

t+δt I 3
(i,j) = F(i,j) × t S4

(i,j−1),

t+δt I 4
(i,j) = F(i,j) × t S3

(i,j+1).

Guillaume’s matched connexion law

t+δt I 1
(i,j) = F(i,j) × t S2

(i−1,j),

t+δt I 2
(i,j) = t S1

(i+1,j),

t+δt I 3
(i,j) = t S4

(i,j−1),

t+δt I 4
(i,j) = t S3

(i,j+1).

Propagation domain Absorbing layer

t+δt I 1
(i,j)

t+δt I 2
(i,j)

t+δt I 4
(i,j)

t+δt I 3
(i,j)

t S2
(i,j) t S1

(i,j)

t S3
(i,j)

t S4
(i,j)

y

x

y

x
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Iterative scheme for the PML wave equation

∂2p(x, y, t)

∂t2
− c2

0

(
∂2p(x, y, t)

∂x2
+
∂2p(x, y, t)

∂y2

)
+ 2σ

∂p(x, y, t)

∂t
+ σ

2p(x, y, t) = 0

Centered finite differences

∂p(x, y, t)

∂t
∼ p(x,y,t+δt)− p(x,y,t−δt)

2δt
,

∂2p(x, y, t)

∂t2
∼ p(x,y,t+δt)−2p(x,y,t)+ p(x,y,t−δt)

δt2 ,

∂2p(x, y, t)

∂x2
∼ p(x+δx,y,t)−2p(x,y,t)+ p(x−δx,y,t)

δx2 ,

∂2p(x, y, t)

∂y2
∼ p(x,y+δy,t)−2p(x,y,t)+ p(x,y−δy,t)

δy2 .

TLM notations

Node position in a 2D orthogonal
mesh: (i , j),

Time step: δt,

Spatial step: δx = δy = δl ,

Celerity in the TLM network:
cTLM = c0 =

√
2 c =

√
2δl/δt.

PML propagation scheme

t+δt p(i,j) =
1

2

1

(1 + σδt)

[
t p(i+1,j) + t p(i−1,j) + t p(i,j+1) + t p(i,j−1) − 2σ2

δt2
t p(i,j)

]
−

1− σδt

1 + σδt
t−δt p(i,j) (16)
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Mean error results for the second set of solutions

First set of solutions with eAL = 60nodes:

Mean error function level (dB) inside the test area for an absorbing layer thickness: eAL = 60nodes ⇔ Nλ = 3: (a) first
approximate PML formulation ; (b) Guillaume’s matched connexion law.

Second set of solutions with eAL = 60nodes:

Mean error function level (dB) inside the test area for an absorbing layer thickness: eAL = 60nodes ⇔ Nλ = 3: (a) second
approximate PML formulation ; (b) Guillaume’s matched connexion law.
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