Méthodologie d'évaluation de l'impact d'un PDU sur le bruit (projet ANR Eval-PDU)

Département IM – UR EASE

Judicaël PICAUT, Nicolas FORTIN JTAV, Aix-en-Provence, 8-9 juin 2011

Procédure générale

SOURCES SONORES (L4.2)

Modèles de source sonore

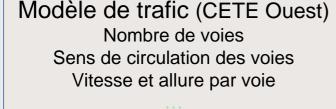
(sources sonores équivalentes) VL, PL

Base de données (2D) géographique du réseau routier

PROPAGATION (L4.3)

Modèle de propagation « simplifié et rapide »

Base de données (3D) du bâti



RÉCEPTION (L4.1)

Indicateurs acoustiques

Niveaux sonores Lden [6h-18h], [18h-22h], [22h-6h]

Principe générale de la production des cartes de bruit

- Développement d'une approche simplifiée pour la réalisation de cartographies sonores sous CorbisGIS
 - 1. Lecture des données d'entrée
 - 2. Calcul de l'émission acoustique (par tronçon)
 - 3. Réalisation du maillage (point de calcul)
 - 4. Calcul de la propagation acoustique

Méthode inspirée de la NMPB (2D)

1. Objectifs:

- Intégration complète dans OrbisGIS
- Limitation des temps de calcul pour produire une carte de bruit dans des « temps raisonnables »

Données d'entrée

Données de trafic (2002, 2008 au format XLS)

- Trafic pour le réseau principal
- Trafic pour le réseau secondaire
- Service des TC (bus, busway, tramway)

Données géographiques

- Routes du département associés aux données de trafic
- BD TOPO® : routes et bâtiments de l'agglomération nantaise
- Zones de trafic de l'agglomération nantaise (réseau principal/secondaire)

Lecture des données d'entrée

Données de trafic : script de lecture en langage Python™

- 1. Chargement des fichiers de trafic
- 2. Extraction des données
- 3. Application d'un « filtre » pour les données manquantes
- 4. Chargement du fichier de coordonnées des tronçons
- 5. Sauvegarde des données au format dbf
- 6. Import des données de trafic sous OrbisGIS (pour requêtes SQL)

Données géographiques :

1. Import des données de trafic sous OrbisGIS (pour requêtes SQL)

Lecture des données d'entrée

TABLE 2 — Description des sorties du modèle de trafic développé par le CETE de l'Ouest et lien avec le calcul de l'émission acoustique des tronçons. La mention « Sans objet » désigne les paramètres qui n'apportent pas d'informations spécifiques pour le calcul des émissions acoustiques. La mention « Non défini » désigne les paramètres dont la contribution pour le calcul des émissions acoustiques n'est pas clairement définie à la date de ce présent rapport. Note : la saturation est calculée à partir du nombre de UVP (1 pour un VL et 2 pour un PL) : la saturation est égale au nombre d'UVP divisé par la capacité.

Libellé	Description	Lien avec le calcul des émis- sions acoustiques			
	Données générales				
Numéro de Tronçon	Numéro de tronçon	Sans objet			
Num Noeud Origine	Numéro du nœud d'origine du tronçon	Nœud d'origine de la ligne source			
Num Noeud Extrémité	Numéro du nœud d'extrémité du tron- con	Nœud d'extrémité de la ligne source			
Sens (1/0)	Sens de circulation : 1 sens aller, 0 sens retour	Sans objet			
Surtype	Type de tronçon (cf. tableau 3)	Utilisé pour la détermination des vitesses réglementaires de circulation			
Type	Surtype + type de tronçon (cf. ta- bleau 3)	Utilisé pour la détermination des vitesses réglementaires de circulation			
Rang	Priorité du tronçon. Plus le rang est élevé plus le tronçon est prioritaire	Non défini			
Longueur (km)	Longueur du troncon	Sans objet			
Nb Voies TI	Nombre de voies de circulation TI par sens	Non renseigné			
Modes autorisés	Mode de transport autorisé sur le tronçon (cf. tableau 4)	Non défini			
Capacité (UVP/h)	Capacité nominale du tronçon (en unité de véhicules par heure) par sens et pour l'ensemble des voies	Non défini			
Vitesse maxi	Vitesse maximale autorisée en mode TI (km/h). Elle est parfois supérieure à la vitesse autorisée pour le mode VL	Nécessaire au calcul du ni- veau de puissance acoustique			
Num D/V		Non renseigné			
Pou	r chaque période de la journée				
Comptage TV	Comptage TV (VL + PL)	Sans objet			
Comptage PL	Comptage PL	Sans objet			
Charge TV	Débit horaire TV (VL + PL)	Débit de référence pour le cal- cul de l'émission acoustique			
Charge PL	Débit horaire PL	Débit de référence pour le cal- cul de l'émission acoustique			
Saturation (%)	Saturation du tronçon	Non défini			
Vitesse en charge VL tronçon	Vitesse en charge des VL (km/h)	Vitesse de référence pour le calcul de l'émission acous- tique			
Temps supplém. dans carrefour (mm)	Temps supplémentaire dans le carre- four (en mn)	Utilisé par le modèle de trafic pour le calcul des longueurs de fil d'attente			
Vitesse en charge VL avec carrefour	Vitesse en charge des VL (km/h) avec prise en compte de la présence d'in- tersection	Vitesse de référence pour le calcul de l'émission acous- tique			

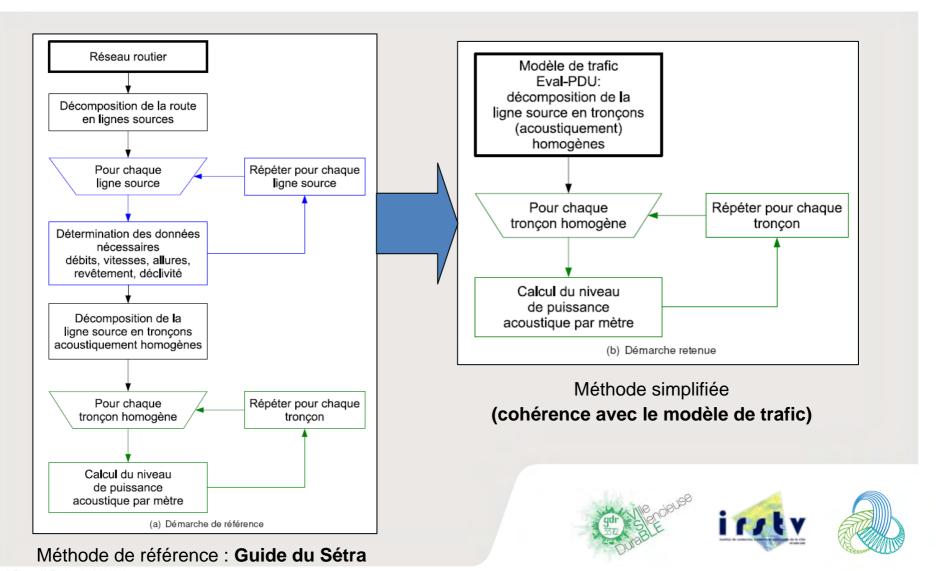
Données issues du modèle de trafic (CETE Ouest) et visualisation sous Orbis GIS

the_geom	NUM	CODE	NOM	NUMTYPE	COORDX	COORDY
POINT (231470.98082454104 2275	1			0	231470.9807	2275801.949
POINT (233546.94327028602 2272	2			3	233546.943	2272910.953
POINT (234643.00997958402.2264	3			0	234643.0099	2264730.035
POINT (235049.95324730204 2272	4			3	235049.9535	2272099.014
POINT (235731.05715781453 2263	- 5			. 7	235731.057	2263972.973
POINT (235804.03652650004 2264	6			0	235804.0365	2264255.039

(a) Extrémité des tronçons : table næuds

id_tronc	from_node	to_node	direction	surtype	type	length	capacity	speedmax	tv	pl	speedload
1	3470	3471	1	5	53	0.068	1000	50	38.19	2.97	50
1	3471	3470	0	5	53	0.068	1000	50	39.84	3.15	50
2	3457	3458	1	5	53	0.046	1200	50	92.72	8.04	50
2	3458	3457	.0	5	53	0.046	1200	50	78.9	7.62	50

(b) Données de trafic : table tron

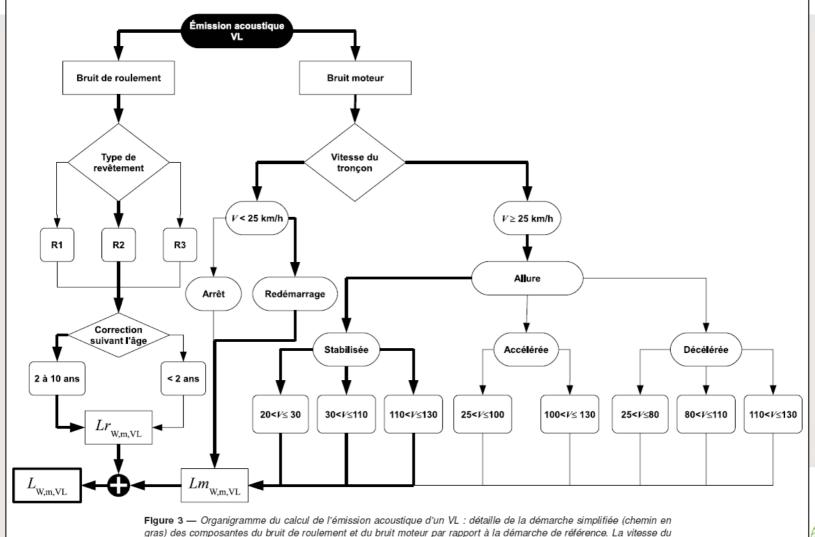

Figure 5 — Exemple de données sources issues du modèle de trafic.

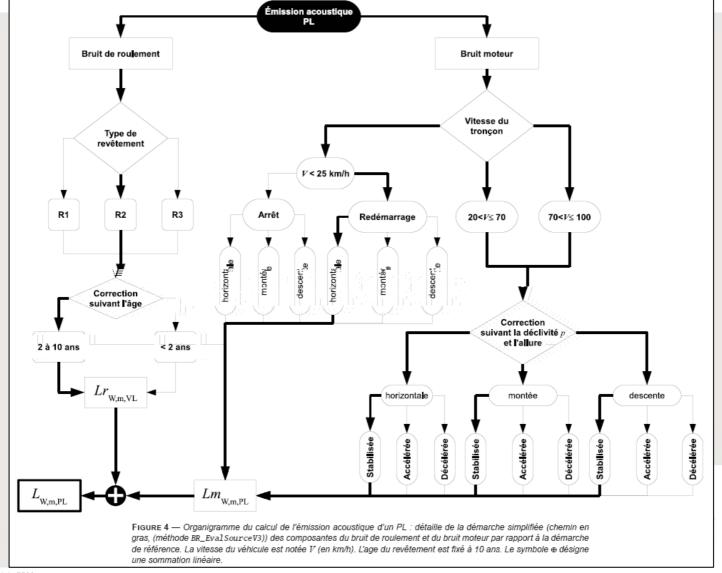
Calcul des émissions acoustiques

Calcul des émissions acoustiques

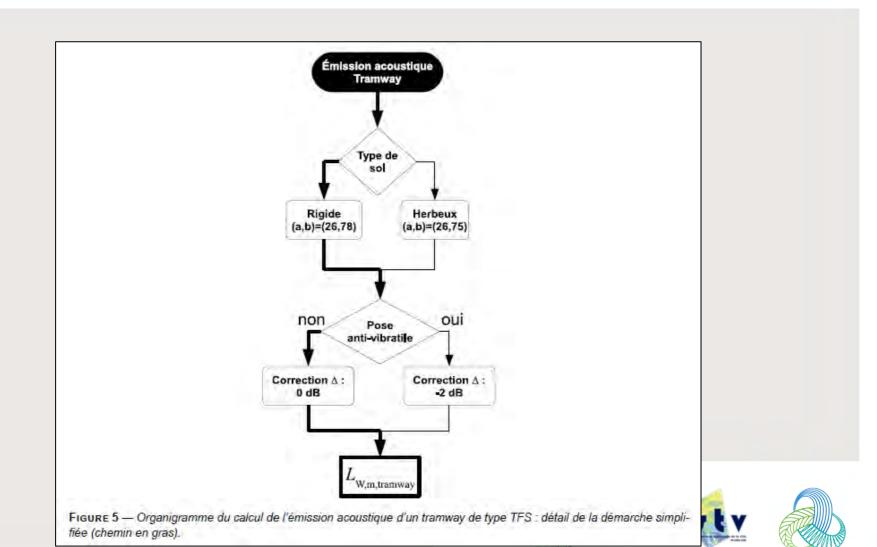
Principe du calcul des émissions acoustiques :

- Calcul par bande de fréquence j
- Calcul des émissions par véhicule (VL, PL-Bus, tramway)
- Pondération par le spectre normalisé du véhicule R(j)
- Affectation du trafic Q pour chaque véhicule

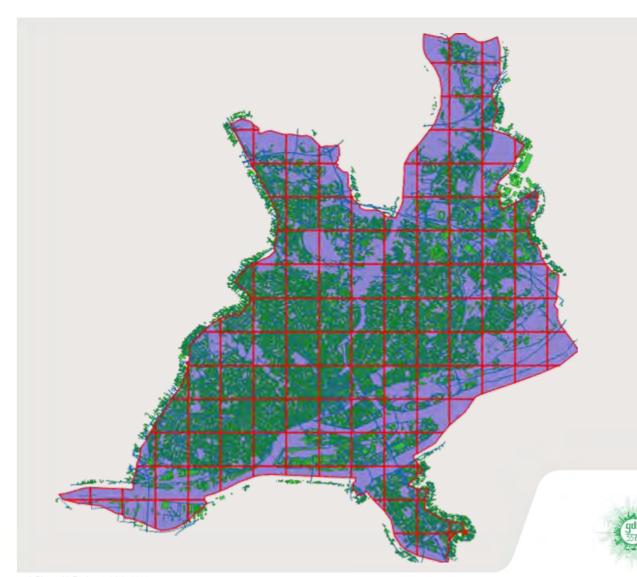

$$L_{W,m}(j) = \bigoplus \sum_{u} (L_{W,m,u} + 10 \log Q_u + R_u(j)),$$


Calcul des émissions acoustiques (VL)

véhicule est notée V (en km/h). Le symbole ⊕ désigne une sommation linéaire.



Calcul des émissions acoustiques (PL-Bus)



Calcul des émissions acoustiques (tramway)

Réalisation du maillage (points de calcul)

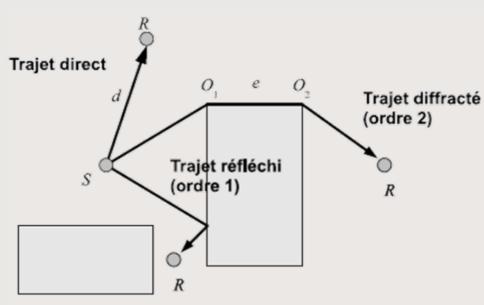
Décomposition du domaine en sous-domaines:

- minimisation de l'espace mémoire utilisé
- 4^N cellules de même taille

Réalisation du maillage (points de calcul)


Triangulation (Delaunay) d'un sous-domaine :

- plusieurs « passes »
- continuité entre sousdomaines
- intégration des lignes sources et du bâti
- maillage avec contrainte sur la forme des mailles
- ajout de points de Steiner

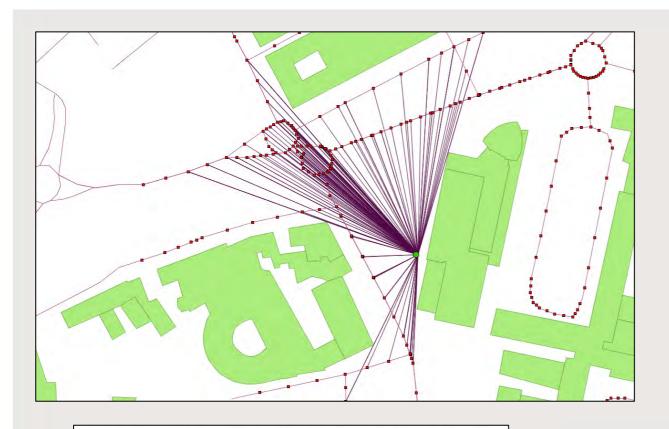

Décomposition des lignes sources en points sources :

- Décomposition propre à chaque point de calcul (optimisation)
- prise en compte des sources hors du sous-domaine

$$L_{R,A} = L_{W} - A_{\text{div}} - A_{\text{atm}} - A_{\text{sol}} - A_{\text{dif}},$$

$$L_{\mathrm{W}} \Leftarrow L_{\mathrm{2W}} = L_{\mathrm{W}} + 3 \mathrm{~dB} = L_{\mathrm{W}} - A_{\mathrm{sol}},$$

$$A_{\rm atm}(R) = \frac{10}{\ln 10} m_{\rm air} R = \alpha_{\rm air} \frac{R}{1000}, \label{eq:Aatm}$$


Principe du calcul:

- Calcul du champ direct :
 - Test de collision « maille à maille »
- Calcul du champ réfléchi (réflexion spéculaire à l'ordre n)
 - Méthode des sourcesimages
- Calcul du champ diffracté (diffraction à l'ordre m)
 - Détection des arêtes

Détection du champ direct entre les points sources et le maillage :

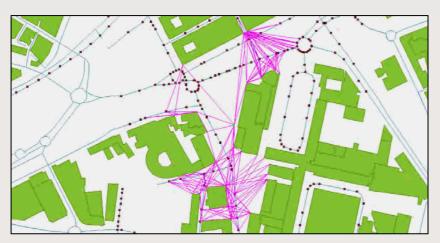
méthode d'optimisation

$$A_{\text{div}}(R) = 10 \log 4\pi + 20 \log R \approx 11 + 20 \log R.$$

n=1

n=2

Détermination du champ réfléchi (spéculaire) entre les points sources et le maillage :


 Méthodes des sourcesimages

$$L'_{\mathsf{W}} = L_{\mathsf{W}} + n \times 10 \log (1 - \alpha_{\mathsf{bâti}}).$$

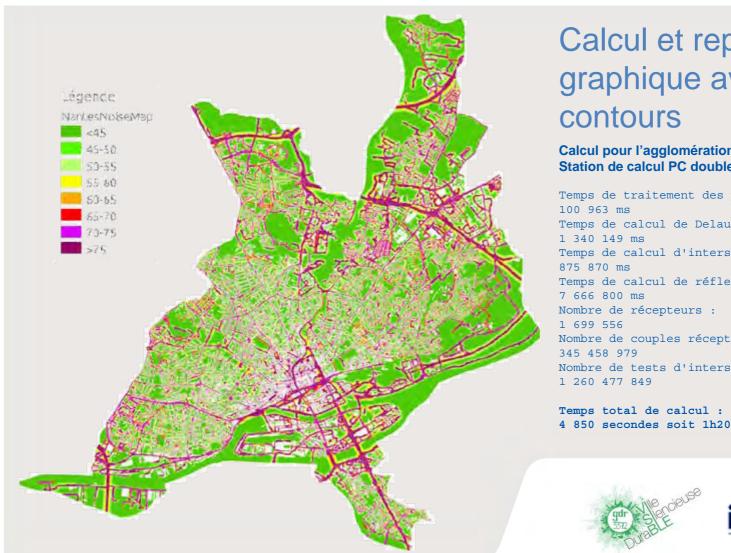
m=1

Détermination du champ diffracté

 Détermination des arêtes de diffraction

$$A_{\mathrm{dif}}(R_m, d) = \begin{cases} 10 \log \left(3 + \frac{40}{\lambda} C'' \delta\right) & \text{si } \frac{40}{\lambda} C'' \delta \ge -2 \\ 0 & \text{sinon} \end{cases}$$

$$\delta = SO_1 + \sum_{i=1}^{N-1} (O_iO_{i+1}) + O_NR - d = SO_1 + e + O_NR - d = R_m - d,$$


$$C'' = \begin{cases} 1 & \text{si } M = 1\\ \frac{1 + (5\lambda/e)^2}{1/3 + (5\lambda/e)^2} & \text{sinon} \end{cases}$$

Production des cartes de bruit

Calcul et représentation graphique avec isocontours

Calcul pour l'agglomération nantaise (n=1, m=1) Station de calcul PC double cœur 2.13 GHz sous linux.

```
Temps de traitement des polygones :
100 963 ms
Temps de calcul de Delaunay :
1 340 149 ms
Temps de calcul d'intersection bâtiment :
875 870 ms
Temps de calcul de réflexion spéculaire :
7 666 800 ms
Nombre de récepteurs :
1 699 556
Nombre de couples récepteur-source :
345 458 979
Nombre de tests d'intersection ligne bâtiment :
1 260 477 849
```


Poursuite des travaux (ANR Eval-PDU)

Méthode de calcul :

- Calcul du champ diffus : détermination du coefficient de diffusion (analyse morphologique) et intégration dans OrbisGIS
- Prise en compte plus spécifique des bus à envisager (suivant disponibilité des lois d'émission)
- Validation de la méthode globale de production des cartes de bruit :
 - Comparaison « qualitative » avec les cartes de bruit produites par Nantes Métropole (2002)
- Application de la méthode :
 - Production de cartes de bruit pour différents scénarii d'un PDU sur Nantes Métropole (i.e. plusieurs fichiers de trafic)

Poursuite des travaux (OrbisGIS)

- Intégration du module de production des cartes de bruit dans OrbisGIS
 - Calcul acoustique sur serveur (Cloud computing)
 - Visualisation des cartes « à distance » et utilisation des nombreux outils de représentation graphique en ligne

Lien web

Merci pour Votre attention

Ifsttar

Centre de Nantes Route de Bouaye, CS 4 44344 Bouguenais Cedex Tél. +33 (0)2 40 84 57 89 Fax. +33 (0)2 40 84 59 92 www.ifsttar.fr Judicael.Picaut@ifsttar.fr

