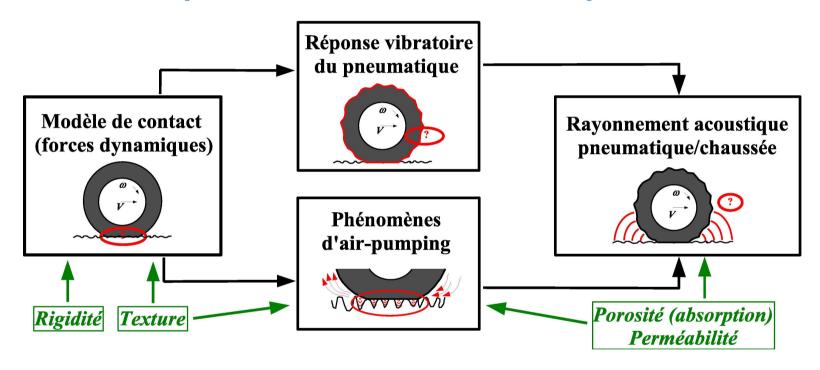


LES PLÉNIÈRES 2010 DU LCPC

Sciences et techniques du **Génie Civil**

JOURNÉES ACOUSTIQUE

Wissembourg – 2 et 3 JUIN 2010



Julien CESBRON – LCPC, IM, EASE

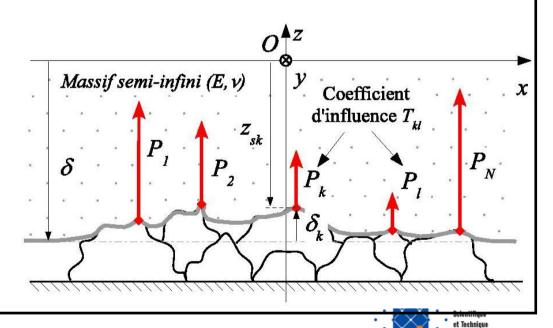
Contexte : prévoir le bruit de contact pneu/chaussée

Le revêtement de chaussée influence fortement le bruit émis Paramètres : texture, porosité, perméabilité et rigidité

Modèle de contact pneu/chaussée multi-aspérités

Hypothèses:

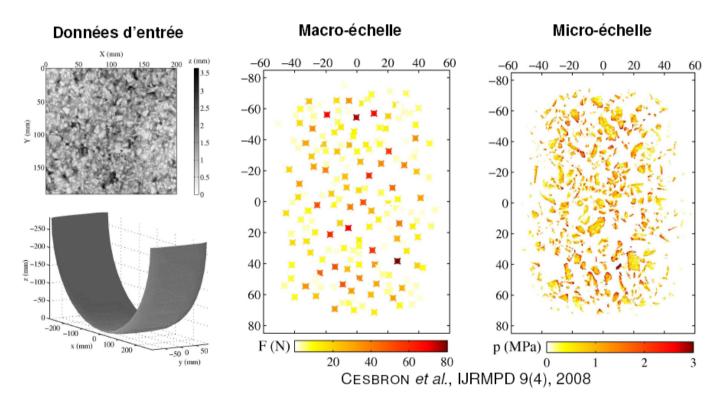
- Surface de chaussée : N aspérités rigides de surface Σ_k composées des points $(\mathbf{x}_k, \mathbf{y}_k, \mathbf{z}_k)$ et de sommets $(\mathbf{x}_{sk}, \mathbf{y}_{sk}, \mathbf{z}_{sk})$
- Pneu : massif semi-infini élastique (E, v)


Lois de contact locales :

$$P_k = \begin{cases} C_k E^* \delta_k^{\gamma_k} & \text{si } \delta_k > 0 \\ 0 & \text{si } \delta_k \le 0 \end{cases}$$

οù

$$\delta_k = z_{sk} - \delta - \sum_{\substack{l=1\\l \neq k}}^{N} T_{kl} P_l$$


avec $T_{kl}=1/(\pi E^*r_{kl})$

Exemple de résultat du modèle en statique

Revêtement BBSG 0/10 en contact avec un pneumatique lisse

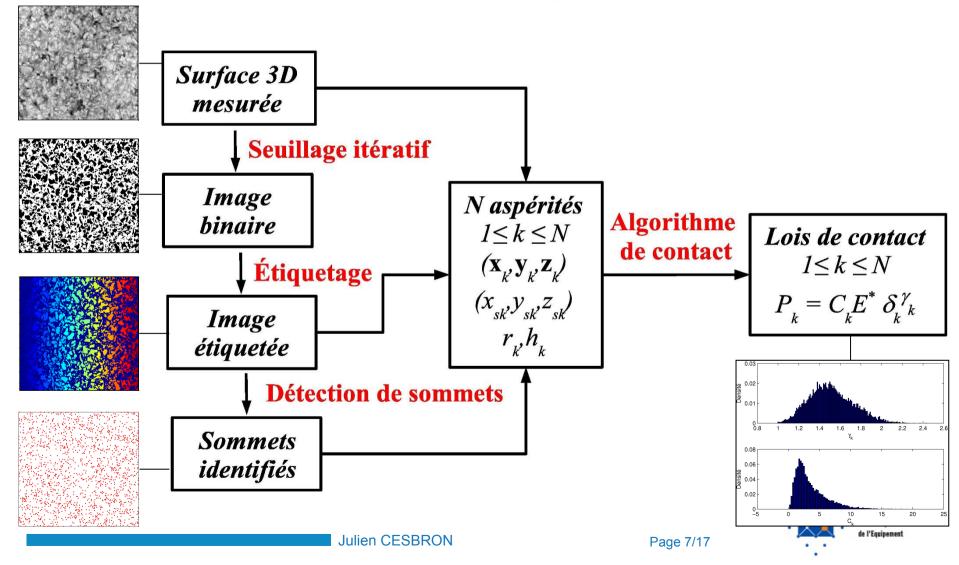
Le modèle donne de bons résultats en statique et se compare favorablement à l'expérience

Objectifs de l'étude

- 1. Identifier les aspérités et les paramètres de contact associés à partir d'une texture de chaussée réelle mesurée en 3D
- 2. Étudier la relation entre les paramètres de contact identifiés et le bruit de contact pneumatique/chaussée mesuré

Paramètres de contact étudiés

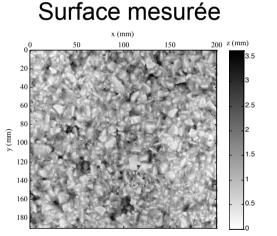
Quatre paramètres de contact sur une aspérité :

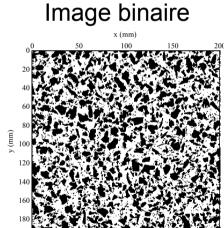

- C_k et γ_k : constantes descriptives de la loi de contact
- r_k : distance moyenne entre le sommet de l'aspérité k et ses plus proches voisins
- h_k: hauteur relative moyenne entre le sommet de l'aspérité
 k et ses plus proches voisins

Densité D : nombre d'aspérités par unité de surface

Méthode d'identification d'aspérités de chaussée

Algorithme de seuillage itératif

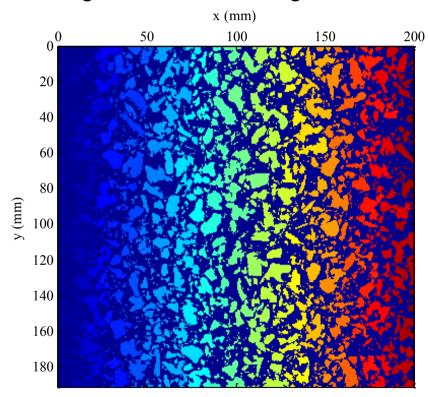

Une aspérité k est définie par un ensemble de points connexes dont le nombre n_k est compris entre n_{min} et n_{max}

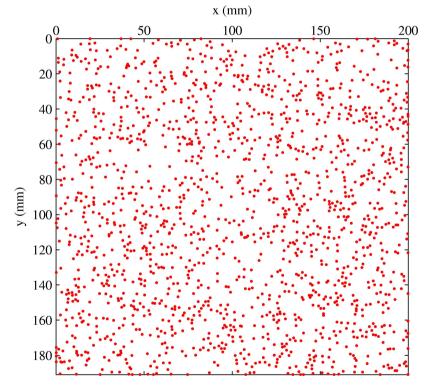

Schéma de principe

$h_{mk} = \sum_{sk} (x_{sk}, y_{sk}) \qquad n_{mim} \leq n_k \leq n_{max} \qquad (x, y)$

4 paramètres d'entrée : h_0 , dh, n_{min} , n_{max}

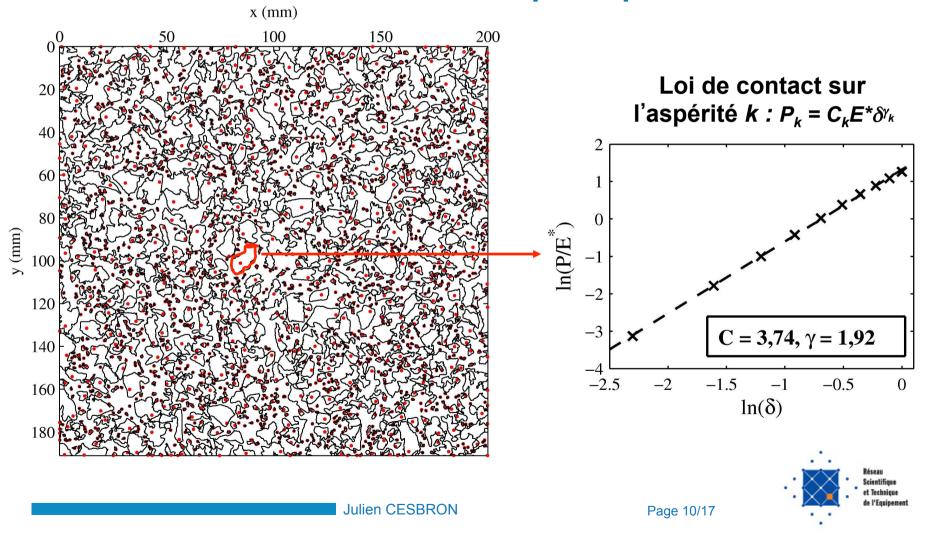
Exemple pour un BBSG 0/10



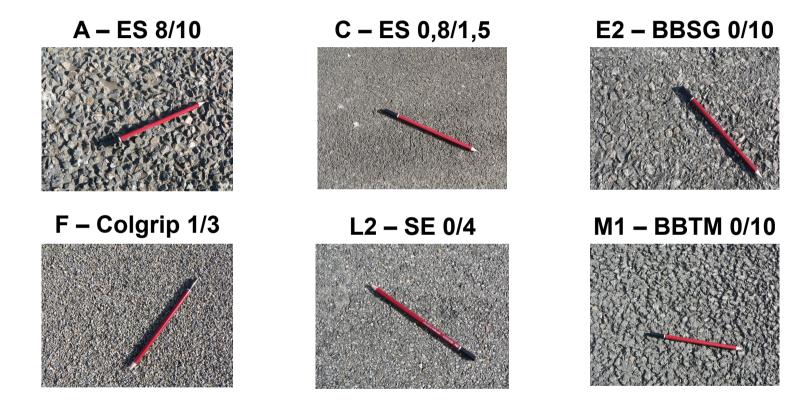

2 étapes « rapides » à partir de l'image binaire

Segmentation de l'image binaire

Même nombre entier *k* attribué à un groupe de pixels connexes

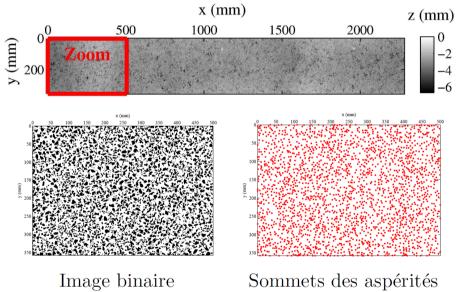

Identification des sommets des aspérités

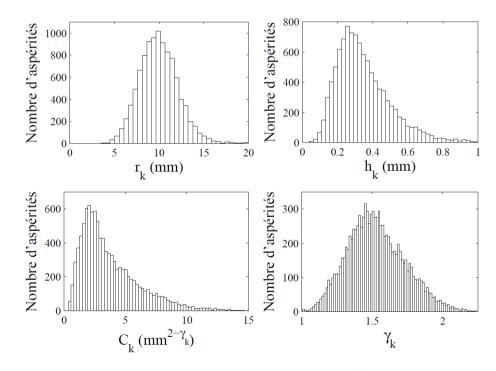
A partir de l'image segmentée et de la surface mesurée



Calcul numérique de la loi de contact sur chaque aspérité

Étude sur 6 revêtements de la piste du LCPC


Mesures de texture 3D (Bast et Müller-BBM, stéréovision, L = 2,30 m) dans le cadre du projet Deufrako P2RN


Identification d'aspérités à partir des textures 3D

Exemple de résultats pour la surface E2 – BBSG 0/10

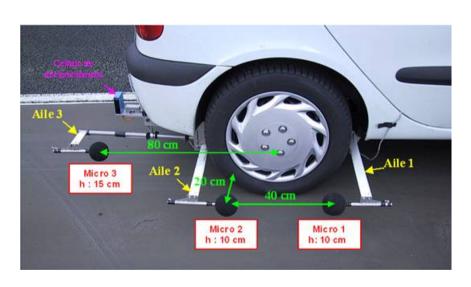
Algorithme d'identification

Histogrammes des paramètres de contact

Paramètres de contact moyens pour les 6 revêtements

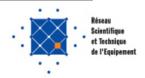
Définitions

$$\begin{cases} \bar{r} = \langle r_k \rangle_{k \in [1,N]} \\ \bar{h} = \langle h_k \rangle_{k \in [1,N]} \\ \bar{C} = \langle C_k \rangle_{k \in [1,N]} \\ \bar{\gamma} = \langle \gamma_k \rangle_{k \in [1,N]} \\ D = N/(L_x L_y) \end{cases}$$


	A	С	E2	F	L2	M1
$ar{r}$	25,1	6,0	10,1	6,8	6,7	12,1
$\pm\sqrt{\sigma_r}$	10,0	1,3	2,7	1,4	$1,\!4$	3,2
$ar{h}$	1,30	$0,\!15$	0,36	0,65	0,23	0,44
$\pm\sqrt{\sigma_h}$	0,58	0,11	0,18	0,33	$0,\!12$	$0,\!42$
\bar{C}	3,0	1,7	3,8	1,8	2,7	4,8
$\pm\sqrt{\sigma_C}$	0,9	0,8	2,5	0,7	$1,\!5$	$3,\!5$
$ar{\gamma}$	1,59	1,28	1,53	1,41	1,46	1,58
$\pm\sqrt{\sigma_{\gamma}}$	0,13	0,09	0,20	0,12	$0,\!15$	$0,\!22$
D	2301	34444	12542	27100	28250	8888

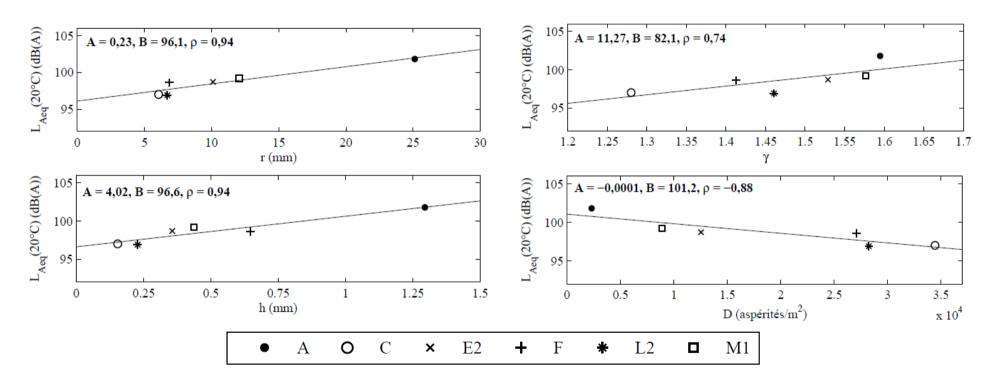
Corrélations avec le bruit de roulement

Mesure en continu du bruit de roulement (méthode LPC 63)



Procédure pour un revêtement

- Acquisition des niveaux de bruit tous les 2 mètres, puis moyenne arithmétique sur la distance du tronçon testé
- 10 passages à vitesse stabilisée entre 65 km/h et 110 km/h par pas de 5 km/h
- Régression logarithmique du niveau de bruit en fonction de la vitesse


Niveaux de bruit équivalents en dBA mesurés à V_{ref} = 90 km/h

			E2			
$L_{Aeq}(20^{\circ}C)$	101,8	97,0	98,7	98,6	96,9	99,2

Corrélations des paramètres de contact moyens avec les niveaux de bruit mesurés

Corrélation positive pour r, h et γ Corrélation négative pour D

Conclusions et perspectives

Conclusions:

- Algorithme d'identification d'aspérités validé pour des textures 3D mesurées sur plusieurs mètres de chaussée;
- Bonne corrélation des paramètres de contact moyens avec les niveaux de bruit mesurés en continu.

Perspectives

- Calculer les forces de contact dynamiques sur plusieurs mètres de chaussée et les relier au bruit (Thèse de G. Dubois 2009-2012);
- Confirmer les corrélations entre les paramètres de contact et le bruit à partir d'un échantillon de mesures plus large;
- Relier les paramètres de contact aux paramètres de formulation des couches de roulement des surfaces routières.

Merci de votre attention

