

LES PLÉNIÈRES 2007 DU LCPC

Sciences et techniques du **Génie Civil**

JOURNÉES ACOUSTIQUE

BORDEAUX - 31 MAI ET 1ER JUIN 2007

AVANCEMENT DES PROJETS SILENCE DEUFRAKO – P2RN

Michel BERENGIER
Centre de Nantes
Division ESAR
Section ARU

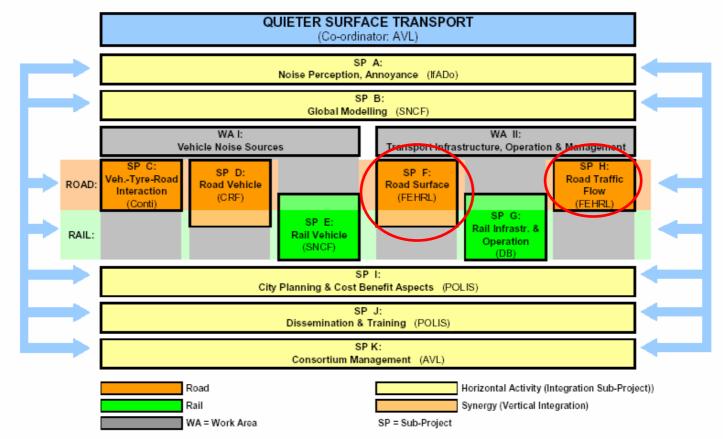
« Quieter Surface Transport in Urban Areas »

SILENCE est un projet de recherche qui propose de développer une méthodologie intégrée pour l'amélioration du bruit des transports terrestres en milieu urbain en traitant plus spécifiquement :

- Le contrôle du bruit à la source
- L'émission du bruit
- La propagation du bruit
- La perception du bruit par l'homme

Pour : la route – le rail – l'infrastructure – la ville

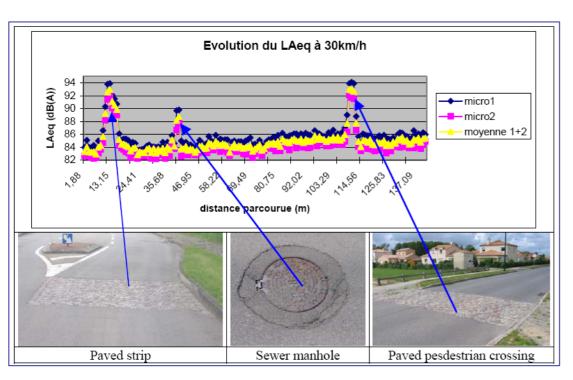
Quelques rappels


- Financé par la Commission Européenne dans le cadre du 6ème PCRD
- Projet intégré
- Démarrage: 1 Février 2005
- Durée: 3 ans
- Coordinateur : AVL List (AT)
- 42 partenaires (Le LCPC intervient sous l'égide du FEHRL)
- Le LCPC participe à 3 W.P. (F3, F4 et H1)

Intitulés des W.P.

Contribution du LCPC et du RST

- WP F3 : Impact sonore des discontinuités de chaussées (dégradations de chaussée et aménagements de voirie) [LCPC + LRPC Bordeaux]
- WP F4 : Adaptation des méthodes de mesure du bruit de roulement au milieu urbain (méthode au passage)
 [LCPC]
- WP H1: Impact sonore des actions de management du trafic (giratoires, chicanes, ralentisseurs, radar, « ondes vertes ») [LCPC + LRPC Blois]



Résultats WP F3

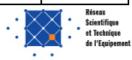
Un exemple parmi plusieurs....

Mesures réalisées entre 30 et 70 km/h

	Speed on the discontinuity	Paved Strip
passage 1	31.9	8.8
passage 2	40.9	10.1
passage 3	50.5	10.8
passage 4	59.8	10.1
passage 5	70.0	12.7

	Speed on the discontinuity	Sewer Manhole
passage 1	31.8	4.4
passage 2	41.6	6.1
passage 3	50.2	6.2
passage 4	59.5	6.1
passage 5	69.4	2.5

	Speed on the discontinuity	Pedestrian crossing
passage 1	34.0	8.8
passage 2	42.7	9.3
passage 3	49.9	9.2
passage 4	59.5	9.6
passage 5	68.0	11.3

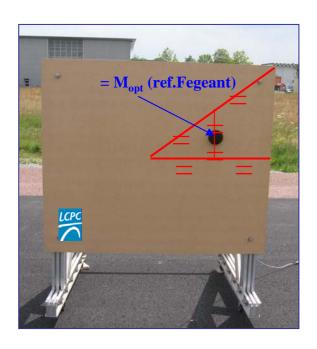


Résultats WP F3

Calculs à confirmer par la mesure.

(Mesures réalisées en région Bordelaise en 2007 avec LR Bordeaux en cours d'analyse)

	Degré de sévérité de l'impact acoustique en fonction du scénario							
				∆Lden (Disc)				
Type de discontinuité	ΔL _{CPX} (Disc)	1 discontinuité sur chaque voie	Discontinuité sur la voie 1	Discontinuité sur la voie 2	4/5 du trafic passe sur la discontinuité voie I	4/5 du trafic passe sur la discontinuité voie 2		
Ralentisseur pavé	10.6dB(A) Important	10.0dB(A) Important	8.4 dB(A) Important	6.2 dB(A) Important				
Plaque [5.1-4.3] [4.4-3.3]/ [3.3-2.4] [2.4		[3.3-2.4]/ [2.4-1.7] dB(A) Significatif/faible	[2.1-1.5]/ [1.4- 0.9] dB(A) Significatif/ faible	[2.8-2.0]/ [2.0-1.4] dB(A) Significatif/ faible	[1.7-1.2]/ [1.1-0.8] dB(A) faible/ négligeable			
Passage piétons pavé	9.5 dB(A) Important	8.7 dB(A) Important						
Ralentisseur en enrobé	2.6 dB(A) significatif	2.6 dB(A) significatif						
Voie de tramway	3.8 dB(A) significatif	4.0 dB(A) significatif						
Voie ferrée	7.7 dB(A) Important	7.0 dB(A) Important						
Faïençage	2.6 dB(A) significatif	1.8/1.2 dB(A) faible	1.2/0.9 dB(A) faible	0.4/0.4 dB(A) négligeable	1.0/0.7 dB(A) négligeable	0.5/0.3 dB(A) négligeable		
Patch, tranchée	[2.0-0.7] dB(A) faible/ négligeable	[1.3-0.8]/ [0.9-0.5] dB(A) Faible/ négligeable	[0.9-0.5]/ [0.6-0.3] dB(A) négligeable	[0.5-0.3]/ [0.7-0.1] dB(A) négligeable	[0.8-0.4]/ [0.5-0.3] dB(A) négligeable	[0.4-0.2]/ [0.2-0.1] dB(A) négligeable		
Plaque Telecom	5.1 dB(A) significatif	4.4/3.3 dB(A) significatif	3.3/2.4 dB(A) significatif	2.1/1.4 dB(A) significatif/ faible	2.8/2.0 dB(A) significatif	1.7/1.1 dB(A) faible		



Résultats WP F4

Technique du « Backing Board »

Résultats WP F3

Mise en évidence de la réflexion

Regression à 90km/h en champ libre						
Régression à 7.5m 3.5m						
série 1	77.1+33.4*LOG(V/90)	84.8+37.2*LOG(V/90)				
série 2	77.9+37.4*LOG(V/90)	83.9+31.7*LOG(V/90)				

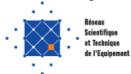
Régression à 90km/h avec "Backing Board"					
7.5m 3.5m					
	` ,	90.3+36.4*LOG(V/90)			
série 2	84.1+35.5*LOG(V/90)	90.1+31.9*LOG(V/90)			

LAmax 7m50

Vitesse	Champ libre	BB	Delta	Vitesse	Champ libre	BB	Delta
30	61.2	66.6	5.4	70	73.8	80.2	6.4
40	65.3	71.0	5.7	80	76.0	82.3	6.3
50	68.6	74.5	5.9	90	77.9	84.1	6.2
60	71.2	77.3	6.0	100	79.6	85.7	6.1
70	73.5	79.6	6.2	110	81.2	87.2	6.0

LAmax 3m50

Vitesse	Champ libre	BB	Delta	Vitesse	Champ libre	BB	Delta
30	67.1	72.9	5.9	70	80.4	86.6	6.2
40	71.7	77.5	5.8	80	82.3	88.5	6.2
50	75.3	81.0	5.7	90	83.9	90.1	6.2
60	78.2	83.9	5.6	100	85.4	91.6	6.2
70	80.7	86.3	5.6	110	86.7	92.9	6.2


Travaux en cours WP H1

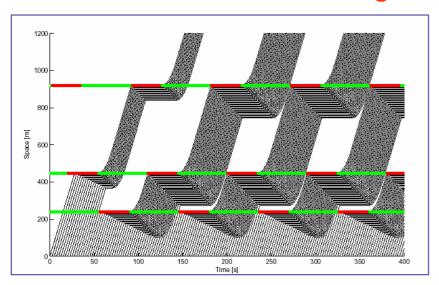
Mesures de l'impact de chicanes (en cours avec LRPC Blois)

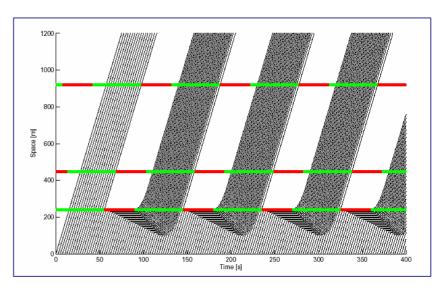
2ème chicane : Bouaye (44) Mesures prévues en juin

Travaux en cours WP H1

Impact des radars (en cours avec DDE 44)

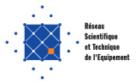
Campagne de mesure réalisée sur le Périphérique Nantais, analyse en cours à la DDE

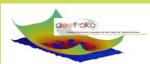



Travaux en cours WP H1

Impact des « Ondes vertes » (avec la contribution du LICIT – ENTPE/INRETS)

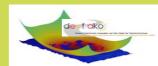
Onde Rouge




Simulation du trafic

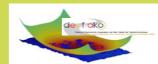
Onde Verte

Calcul de l'impact acoustique à réaliser



« Prediction and Propagation of Rolling Noise »

- Développement d'un nouveau concept de chaussée peu bruyante à partir d'un modèle hybride d'émission
- Détermination de l'impact acoustique à grande distance du revêtement de chaussée optimisé
- Vérification de l'efficacité acoustique sur des revêtements de chaussées optimisés sur site réel

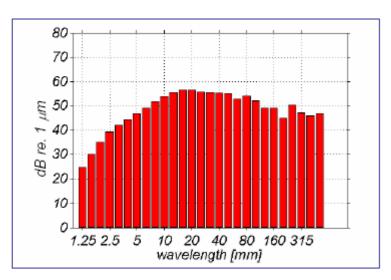


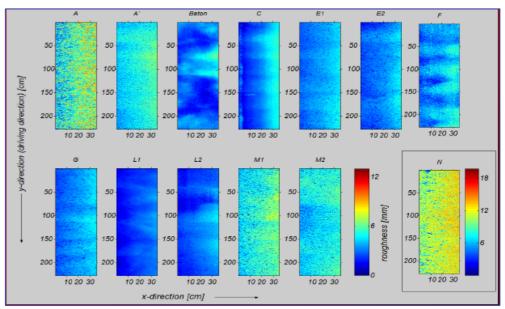
Quelques rappels

- Financé dans le cadre du programme de coopération Franco-Allemande DEUFRAKO
- France : PREDIT (Financement ADEME)
 Allemagne : Ministère des Finances et de la Technologie
- Démarrage: 21 Avril 2006
- Durée: 2 ans
- Coordinateurs : LCPC (F) et BASt (D)
- 5 Partenaires français (LCPC, INRETS, ENPC, Colas, Eiffage TP)
- 2 Partenaires allemands (BASt, Müller-BBM)

Intitulés des WP et Contribution des organismes

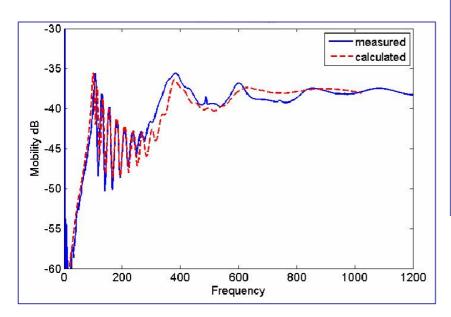
- WP1 : Animation du projet [LCPC + BASt]
- WP2 : Validation et application du modèle pour la prévision du bruit de roulement [LCPC + INRETS + ENPC + Sociétés Routières + BASt + MBBM]
- WP3 : Simulation de la propagation à grande distance [LCPC + ENPC + BASt]
- WP4 : Valorisation
 [LCPC + INRETS + ENPC + Sociétés
 Routières + BASt + MBBM]

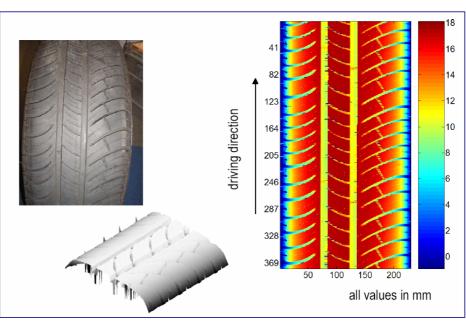


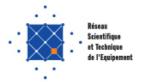


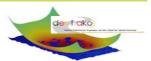
Résultats WP2

Mesures de texture (Piste LCPC)

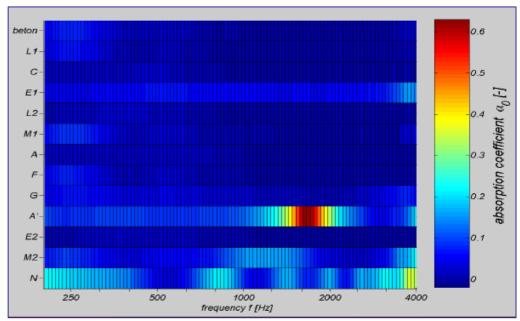





Résultats WP2


Mesures des caractéristiques du pneumatique

+ Détermination de la distribution des forces dans l'aire de contact

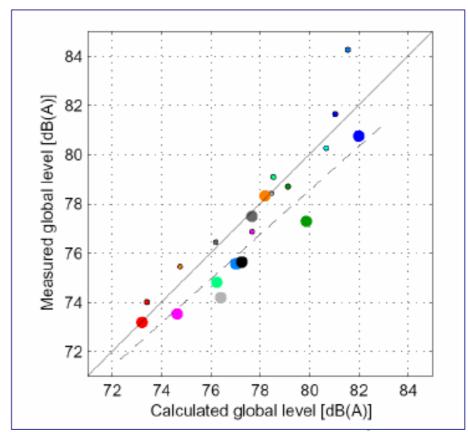


Résultats WP2

Mesures d'absorption

Méthode ISO 13472-1

+ Calage des paramètres du modèle phénoménologique

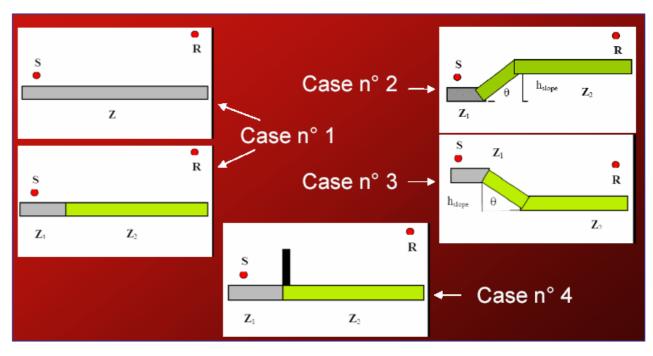


Résultats WP2

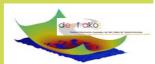
Premières validations du modèle HyRoNe (INRETS)

- Revêtements de la piste du LCPC à Nantes
- Mesures CPB (dBEuler)
- Prise en compte de la correction de température

A comparer avec SPERoN (MBBM)

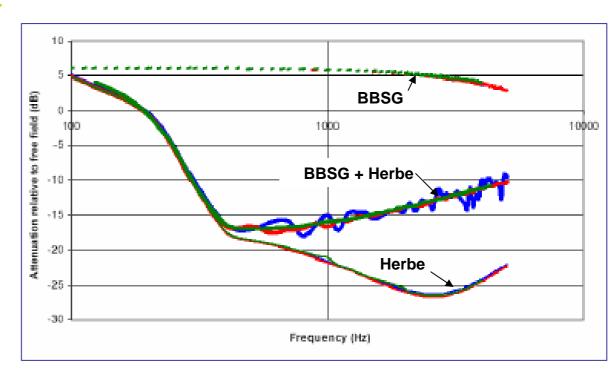


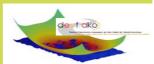
Résultats WP3


Configurations « type » pour test

des logiciels

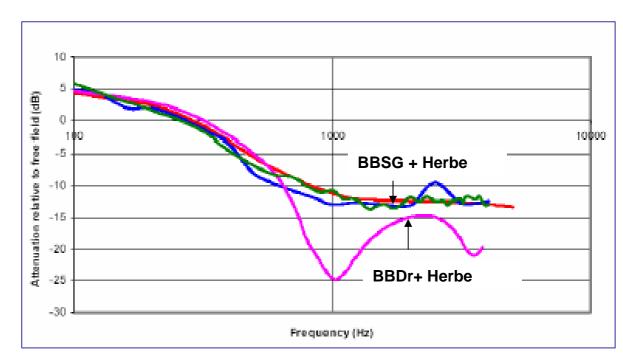
- Modèles Analytiques (Propate, Disced)
- Modèles
 Numériques
 (BEM, Equation parabolique)

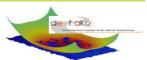



Résultats WP3

Comparaison Approches Analytique et Numériques

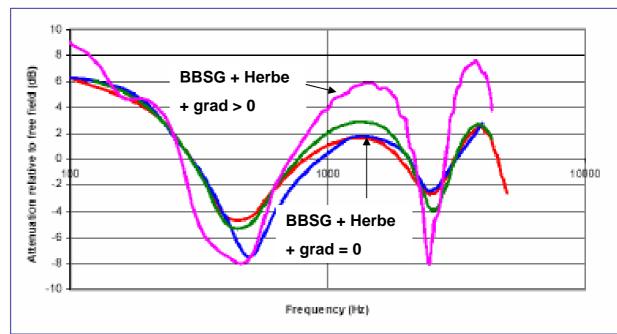
Terrain plan discontinu

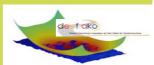



Résultats WP3

Comparaison Approches Analytique et Numériques

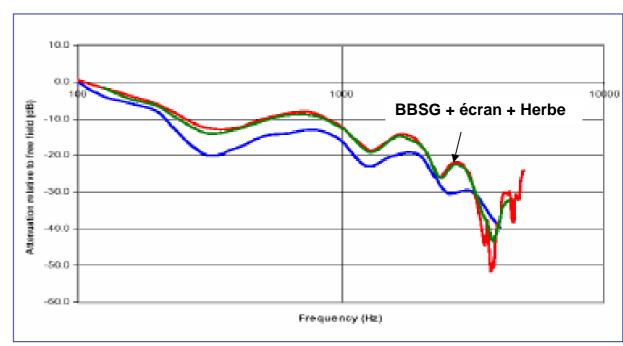
Remblai

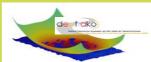



Résultats WP3

Comparaison Approches Analytique et Numériques

Déblai




Résultats WP3

Comparaison Approches Analytique et Numériques

Barrière

Travaux en cours

- WP2 : Poursuite de la validation du modèle
 - Réalisation des planches d'essai à partir d'une texture calculée
 - Vérification expérimentale
- WP3 : Classification en champ lointain des revêtements Français et Allemands
 - Effet des nouvelles formulation à grande distance
 - Création d'une base de données commune (DEUFRABASE)
- WP4 : Publications dans congrès

