

Modal testing and finite element modelling of a reduced-sized tyre for rolling contact investigation

Yuan-Fang ZHANG, Julien CESBRON, Michel BÉRENGIER IFSTTAR – Environmental Acoustics Laboratory

Hai-Ping YIN Université Paris-Est, Laboratoire Navier

Context

- Over 50 km/h, rolling noise predominates over other road noise sources.
- Dynamic tyre/road contact, a major rolling noise source, needs a better understanding.
- A cylindrical test rig incorporating a go-kart tyre will be used for this purpose.
- Modal testing was done to provide a realistic numerical model of the tyre for contact simulation.

Context

- Advantages of using a go-kart tyre:
 - easier to manipulate in laboratory
 - less inertial effects during rotations
 - simpler structure for modelling
- Type of go-kart tyre:
 - commercial slick tyre
 - 10-4.50-5, i.e. 114/55R5 in ISO
 - tread: rubber layer
 - carcass: rubber-coated nylon layers
 - bead: reinforcement by steel wires
 - maximal inflation pressure: 3.9 bars

Modal testing – Experimental set-up

Schematic drawing and photo of the experimental set-up

- Single-Input Multiple-Output approach
- Suspended tyre radially drived by a shaker
- 1 impedance head for direct force and acceleration measurements
- 5 accelerometers for transfer acceleration measurements
- 528 measurement points: 11 points on each outer contour of 48 cross sections

Modal testing – Measurements

- Input signal: random signal swept between 0 and 6000 Hz
- Complex FRFs (Frequency Response Functions) calculated
- Inflation pressure = 1 bar: measurements over the whole tyre
- Validation of geometrical symmetries:
 - symmetry about the median line around the tyre
 - symmetry about the excitation direction
- Inflation pressure = 0 and 2 bars: measurements on a quarter of the tyre (half of the upper part)

Modal testing – Modal analyses

• Modal parameters (eigenfrequencies and damping ratios) extracted using the global RFP (Rational Fraction Polynomial) method $\frac{2N-1}{\sum n}$ (in)k

$$H(\omega) = \frac{\sum_{k=0}^{2N-1} a_k (i\omega)^k}{\sum_{k=0}^{2N} b_k (i\omega)^k}$$

 Curve-fitting performed for frequency range 280-1200 Hz to include the few visually identifiable modes

$$e_{f} = \sum_{k=0}^{2m-1} a_{k} (i\omega_{f})^{k} - \tilde{H}(\omega_{f}) \sum_{k=0}^{2m} b_{k} (i\omega_{f})^{k}$$

Synthesized FRFs constructed based on extracted modes

Modal testing – Modal analyses

(left) and a transfer point (right) for the inflation pressure of 1 bar

Modal testing – Modal analyses

• Extracted modal parameters for inflation pressure of 1 bar:

Mode	1	2	3	4	5	6	7	8
$f(\mathrm{Hz})$ $\zeta(\%)$	$\begin{array}{c} 310\\ 4.9\end{array}$	$\begin{array}{c} 357 \\ 5.4 \end{array}$	$\begin{array}{c} 416\\ 4.6\end{array}$	$505\\6.2$	$\begin{array}{c} 602 \\ 5.9 \end{array}$	$\begin{array}{c} 726 \\ 5.6 \end{array}$	$\begin{array}{c} 850\\ 5.8\end{array}$	$\begin{array}{c} 1000\\ 5.3 \end{array}$

• Extracted modes for inflation pressures of 0, 1 and 2 bars:

Numerical simulation – FE model-building

• Exploitation of symmetries:

- axisymmetry about the tyre axle
- symmetry about the median plane of the tyre

• Properties of the tyre:

- rim considered perfectly rigid
- rubber: elastic, homogeneous material
- Young's modulus: 117 MPa
- Poisson's ratio: 0.48
- Density : 1100 kg/m³

Numerical simulation – Model-building

• Pressurization of the tyre:

Numerical simulation – Modal analyses

• Extracted modal parameters for inflation pressure of 1 bar:

Mode	1	2	3	4	5	6	7	8
$f(\mathrm{Hz})$	310	355	419	502	605	729	871	1031

Extracted modes for inflation pressures of 0, 1 and 2 bars:

Comparison of results

• Experimental and numerical results of eigenfrequencies for inflation pressure of 1 bar:

Comparison of results

point (left) and a transfer point (right) for the inflation pressure of 1 bar

Conclusions and perspective

- Experimental modal analyses on a go-kart tyre for inflation pressures of 0, 1 and 2 bars
- Finite element tyre model having good agreement in terms of modal properties with experimentation for 280-800 Hz
- Investigation of the rolling contact problem using this tyre model

Thank you for your attention!

lfsttar

Centre de Bron, Cité des Mobilités 25, avenue François Mitterrand, case 24 69675 BRON Cedex Tél. +33 (0)4 72 14 24 06 Fax. +33 (0)4 72 37 68 37 Centre de Nantes Route de Bouaye, CS4 44344 BOUGUENAIS Cedex Tél. +33 (0)2 40 84 58 00 Fax. +33 (0)2 40 84 59 99

<u>www.ifsttar.fr</u> yuanfang.zhang@ifsttar.fr julien.cesbron@ifsttar.fr

Zhang et al. - Modal testing and finite element modelling of a reduced-sized tyre for rolling contact investigation - Euronoise 2015 - 31 May – 3 June - Maastricht