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Decreased noise exposure for pedestrians, cyclists…

Low-height noise barriers can be an efficient way to create 
quiet zones close to transportation routes in urban areas

Source : • M. Baulac, « Optimisation des protections antibruit routières de forme complexe », thèse de doctorat, 
Université du Maine (Le Mans, France), 2006
• F. Koussa, « Évaluation de la performance acoustique des protections antibruit innovantes utilisant des moyens 
naturels : application aux transports terrestres », thèse de doctorat, Ecole Centrale de Lyon, 2012
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This talk introduces a gradient-based optimization method 
to design the surface treatment of a low-height barrier

Optimization results

Implementation of the barrier

Gradient calculation

* A. Jolibois, D. Duhamel, V.W. Sparrow, J. Defrance, P. Jean, “Application of admittance optimization to the design of a 
low-height tramway noise barrier”, Proceedings of Internoise 2012 in New York City (August 2012)
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A low-height noise barrier close to a tramway has been 
considered

*Source: M. A. Pallas, J. Lelong, R. Chatagnon, “Characterization of tram noise emission and contribution of the 
noise sources”, Appl. Acoust. 72, 437-450 (2011)

Source
Tramway noise
Line source on ground

Barrier
Arbitrary fixed geometry
Holds in a 1m wide square
Arbitrary admittance

Physical conditions
Homogeneous atmosphere
Infinitely long barrier (2D approx.)
Locally reacting surface treatment
Rigid ground
Reflection on tramway side : baffle 

(*)



A T-shape geometry and two kinds of admittances have 
been considered for the barrier coverage

T-shape

Micro-perforated panel (MPP)3,4

Porosity: smin = 0.01 ; smax = 0.4
Hole radius [mm]: a0,min = 0.5 ; a0,max = 5
Panel thickness [cm]: l0,min = 0.2 ; l0,max = 1
Cavity depth [cm]: Dmin = 1 ; Dmax = 10
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Source: 1 Delany and Bazley, “Acoustical properties of fibrous absorbent materials”, Appl. Acoust. 3, 105-116 (1970)
2 Attenborough et al., “Outdoor ground impedance models”, J. Acoust. Soc. Am. 129(5), 2806-2819 (2011)
3 Maa, “Potential of microperforated panel absorber”, J. Acoust. Soc. Am. 104(5), 2861-2866 (1998)
4 Asdrubali and Pispola, “Properties of transparent sound-absorbing panels for use in noise barriers”,

J. Acoust. Soc. Am. 21(1), 214-221 (2007)

Porous

MPP

Rigid

Porous (thick grass): Delany & Bazley layer1

Flow resistivity [kPa s/m2]: σmin = 50 ; σmax = 200
Layer thickness [cm]: dmin= 1 ; dmax = 10

(2)



This  goal is to minimize the noise reaching the receiver 
zone by designing the admittance distribution
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Attenuation at 
each frequency

Weighted 
attenuation

Broadband 
insertion loss



This  goal is to minimize the noise reaching the receiver 
zone by designing the admittance distribution
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Attenuation at 
each frequency

Weighted 
attenuation

Minimize e (maximize IL)

Broadband 
insertion loss

Optimization
Panel parameters

Width of each panel

Need the gradient

Gradient-based algorithm : SQP
fn : 6 frequencies per octave (100-2500 Hz)
5 random starting points



The gradient w.r.t to the admittance parameters is calculated 
efficiently using the BEM and the adjoint state approach

BEM

(Primal BEM integral equation)

Admittance β

Pressure pΓ

Implicit function

Explicit function

State:

Using the adjoint state* : (Dual BEM integral equation)

8 *Source: G. Allaire, ”Conception optimale des structures”, Springer (2007)



A very simple expression for the gradient with respect to the 
admittance can then be written
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Gradient with respect to a model parameter

βp : admittance on Γp
Gradient with respect to a panel width

Computational aspects

State and adjoint state calculation

Gradient calculation

2 BEM problems

Explicit integral

x2 CPU time

Negligible CPU time



T-shape
Rigid 5.6 dB(A)

Absorbent 16.6 dB(A)

Optimized 23.1 dB(A)

Optimization gain: 6.5 dB(A)

Results show good improvement of the barrier performance 
especially in the mid-frequency range
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Absorbent: D&B layer – σ = 50 kPa s/m2 , d = 10 cm
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Absorbent: D&B layer – σ = 50 kPa s/m2 , d = 10 cm



In summary, admittance optimization allows to design low-
height noise barriers surface treatment efficiently

Adjoint state

Sensitivity (gradient) w.r.t. admittance parameters

Negligible extra CPU time

Gradient-based optimization algorithm

Porous materials 

Ex: MPP and porous layers

Baseline absorption

Prevent reverberant build-up

MPP
Automatic tuning with optimization

Further increase attenuation at 
mid-frequencies

Questions ?

Optimization gain of 6 dB(A)

12



BACKUP SLIDES



The gradients involved are complex functional gradients 
defined on the barrier

Curve Γ

D : set of smooth complex functions defined on Γ
F functional on D
Linear approximation of F about f:

Lf :  linear form on D (differential)

If F is real

“Gradient” of F

14

Identification with a complex function

Notation

Properties



The sound field resolution comes down to the 
determination of the pressure on the scatterer (the state)

G: Green’s function (Rigid) ground reflection + coherent line source (2D)

Given a pressure distribution p on Γ, define:
Adjoint properties

Scattering problem

Integral representation
(Kirchhoff-Helmhotz integral theorem)

State

15

Incident and scattered field



The objective function depends on the admittance and the 
shape both explicitly and implicitly

Curve Γ

Admittance β

State pΓ State equation :

State pΓ is an implicit function of admittance β

Implicit function

16
* Source: P. Jean, "A variational approach for the study of outdoor sound propagation and application to railway noise," 
J. Sound Vib. 212 (2), 275-294 (1998).

Integral representation (BEM)

primal BEM problem (MICADO*)



The adjoint state is introduced to avoid dealing with the 
implicit dependence of the state on the parameters

Define the Lagrangian

Adjoint state equation

Total gradient

17 Source: G. Allaire, ”Conception optimale des structures” (Optimal design of structures), Springer (2007)

dual BEM problem

Explicit function



The adjoint state is in fact the “state’’ of a dual scattering 
problem and can be solved by the BEM as well

2 classical BEM integral equations: same operator, different RHS
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Results show good improvement of the barrier performance 
especially in the mid-frequency range

Thin wall

Rigid 3.7 dB(A)

Absorbent 14.3 dB(A)

Optimized 17.8 dB(A)

Optimization gain: 3.5 dB(A)

19 Absorbent: D&B layer – σ = 50 kPa s/m2 , d = 10 cm



Square

Rigid 3.1 dB(A)

Absorbent 15.7 dB(A)

Optimized 21.6 dB(A)

Optimization gain: 6 dB(A)

Results show good improvement of the barrier performance 
especially in the mid-frequency range

20 Absorbent: D&B layer – σ = 50 kPa s/m2 , d = 10 cm



Both surface treatments enhance attenuation in different 
frequency bands
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One can also assess the accuracy of the approximations used 
in the optimization model

Absorbing ground ?

Realistic tram cross section ?
Vertical baffle

Rigid ground

Benefit of the optimized 
admittance ?

22



Different cases involving more realistic situations have been 
considered for comparison
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Absorbing ground : Delany & Bazley layer – σ = 50 kPa s/m2 , d = 10 cm



The benefit of the barrier is decreased when more realistic 
conditions are considered, but still significant
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a) Vertical baffle, rigid ground, opt. β

b) Realistic tram, rigid ground, opt. β

c) Realistic tram, absorbing ground, opt. β

d) Realistic tram, absorbing ground, uniform absorbing β

ILA = 17.8 dB(A)

ILA = 15.8 dB(A)

ILA = 12.1 dB(A)

ILA = 9.0   dB(A)

Optimization gain : 3+ dB(A)

Thin wall



The benefit of the barrier is decreased when more realistic 
conditions are considered, but still significant
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a) Vertical baffle, rigid ground, opt. β

b) Realistic tram, rigid ground, opt. β

c) Realistic tram, absorbing ground, opt. β

d) Realistic tram, absorbing ground, uniform absorbing β

ILA = 21.6 dB(A)

ILA = 19.3 dB(A)

ILA = 15.6 dB(A)

ILA = 10.9 dB(A)

Optimization gain : 4.5+ dB(A)

Square



The benefit of the barrier is decreased when more realistic 
conditions are considered, but still significant
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a) Vertical baffle, rigid ground, opt. β

b) Realistic tram, rigid ground, opt. β

c) Realistic tram, absorbing ground, opt. β

d) Realistic tram, absorbing ground, uniform absorbing β

ILA = 23.1 dB(A)

ILA = 22.2 dB(A)

ILA = 17.9 dB(A)

ILA = 12.4 dB(A)

Optimization gain : 5.5+ dB(A)

T-shape


