Optimisation d'admittance appliquée à la conception d'une barrière antibruit de faible hauteur

UNIVERSIT

PENNSTATE

200

A. Jolibois, D. Duhamel Equipe Dynamique - UR Navier Ecole des Ponts ParisTech Université Paris-Est

V. W. Sparrow Graduate Program in Acoustics The Pennsylvania State University

J. Defrance, P. Jean

Pôle Acoustique Environnementale et urbaine Centre Scientifique et Technique du Bâtiment (CSTB)

Journées Techniques "Acoustique et Vibrations"

Autun – le 10 et 11 octobre 2012

Low-height noise barriers can be an efficient way to create quiet zones close to transportation routes in urban areas

kworth30, Flickr

Source : • M. Baulac, « Optimisation des protections antibruit routières de forme complexe », thèse de doctorat, Université du Maine (Le Mans, France), 2006

• F. Koussa, « Évaluation de la performance acoustique des protections antibruit innovantes utilisant des moyens

naturels : application aux transports terrestres », thèse de doctorat, Ecole Centrale de Lyon, 2012

This talk introduces a gradient-based optimization method to design the surface treatment of a low-height barrier

$$\frac{\mathrm{d}P}{\mathrm{d}\beta}(\beta, p_{\Gamma}) = \frac{\partial \mathcal{L}}{\partial \beta}(\beta, p_{\Gamma}, q_{\Gamma}) \qquad \text{Gradient calculation}$$

PENNSTATE

* A. Jolibois, D. Duhamel, V.W. Sparrow, J. Defrance, P. Jean, "Application of admittance optimization to the design of a low-height tramway noise barrier", Proceedings of Internoise 2012 in New York City (August 2012)

A low-height noise barrier close to a tramway has been considered

Source Tramway noise Line source on ground

<u>Barrier</u> Arbitrary fixed geometry Holds in a 1m wide square Arbitrary admittance

Physical conditions

Homogeneous atmosphere Infinitely long barrier (2D approx.) Locally reacting surface treatment Rigid ground Reflection on tramway side : baffle

*<u>Source</u>: M. A. Pallas, J. Lelong, R. Chatagnon, "Characterization of tram noise emission and contribution of the noise sources", Appl. Acoust. **72**, 437-450 (2011)

A T-shape geometry and two kinds of admittances have been considered for the barrier coverage

Porous (thick grass): Delany & Bazley layer¹

Flow resistivity [kPa s/m²]: $\sigma_{min} = 50$; $\sigma_{max} = 200$ (2) Layer thickness [cm]: $d_{min} = 1$; $d_{max} = 10$

Micro-perforated panel (MPP)^{3,4}

$$z_{\text{MPP}}(f) = -i \frac{k l_0}{s} \left(\frac{1}{\Theta(x')} + \frac{16}{3\pi} \frac{a_0}{l_0} \frac{\Psi(\xi)}{\Theta(x)} \right) + i \cot(kD)$$

$$k = \frac{2\pi f}{c_0} ; \ \xi = \sqrt{s} ; \ x = a_0 \sqrt{\frac{2\pi f \rho_0}{\mu}} ; \ x' = a_0 \sqrt{\frac{2\pi f \rho_0}{\mu'}}$$
Porosity:
$$s_{\text{min}} = 0.01 ; \ s_{\text{max}} = 0.4$$

Hole radius [mm]: Panel thickness [cm]: Cavity depth [cm]: $s_{min} = 0.01$; $s_{max} = 0.4$ $a_{0,min} = 0.5$; $a_{0,max} = 5$ $l_{0,min} = 0.2$; $l_{0,max} = 1$ $D_{min} = 1$; $D_{max} = 10$

PENNSTATE

CSTE

Source: ¹ Delany and Bazley, "Acoustical properties of fibrous absorbent materials", Appl. Acoust. 3, 105-116 (1970)
 ² Attenborough et al., "Outdoor ground impedance models", J. Acoust. Soc. Am. 129(5), 2806-2819 (2011)
 ³ Maa, "Potential of microperforated panel absorber", J. Acoust. Soc. Am. 104(5), 2861-2866 (1998)
 ⁴ Asdrubali and Pispola, "Properties of transparent sound-absorbing panels for use in noise barriers",

J. Acoust. Soc. Am. 21(1), 214-221 (2007)

This goal is to minimize the noise reaching the receiver zone by designing the admittance distribution

This goal is to minimize the noise reaching the receiver zone by designing the admittance distribution

Minimize e (maximize IL) Gradient-based algorithm : SQP f_n : 6 frequencies per octave (100-2500 Hz) 5 random starting points

Panel parameters Width of each panel

Need the gradient
$$\frac{\mathrm{d}e}{\mathrm{d}a} \rightarrow \frac{\mathrm{d}A_n}{\mathrm{d}a} \rightarrow \frac{\mathrm{d}P(f_n)}{\mathrm{d}a}$$

The gradient w.r.t to the admittance parameters is calculated efficiently using the BEM and the adjoint state approach

$$P = P(\beta, p_{\Gamma}(\beta)) \quad \Rightarrow \quad \frac{\mathrm{d}P}{\mathrm{d}\beta} = \frac{\partial P}{\partial\beta} + \frac{\partial P}{\partial p_{\Gamma}} \circ \frac{\mathrm{d}p_{\Gamma}}{\mathrm{d}\beta} \quad \text{Implicit function}$$

Using the adjoint state^{*}: q_{Γ} (Dual BEM integral equation)

 $\frac{\mathrm{d}P}{\mathrm{d}\beta}(\beta,p_{\Gamma}) = \frac{\partial\mathcal{L}}{\partial\beta}(\beta,p_{\Gamma},q_{\Gamma}) \quad \longrightarrow \quad \text{Explicit function}$

A very simple expression for the gradient with respect to the admittance can then be written

$$\frac{\mathrm{d}P}{\mathrm{d}\beta}(\beta) = \frac{\partial \mathcal{L}}{\partial \beta}(\beta, p_{\Gamma}, q_{\Gamma}) = ik \, p_{\Gamma} \, q_{\Gamma}$$

Gradient with respect to a model parameter

$$\frac{\mathrm{d}P}{\mathrm{d}\sigma} = \operatorname{Re}\left[ik\,\frac{\mathrm{d}\beta_p}{\mathrm{d}\sigma}\int_{\Gamma_p}p_{\Gamma}\,q_{\Gamma}\right]$$

 β_p : admittance on Γ_p

Gradient with respect to a panel width

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \operatorname{Re}\left(ik\left(\beta_0 - \beta_1\right)p_{\Gamma}(t)q_{\Gamma}(t)J_{\Gamma}(t)\right)$$

Computational aspects

State and adjoint state calculation \longrightarrow 2 BEM problems \longrightarrow x2 CPU time Gradient calculation \longrightarrow Explicit integral \longrightarrow Negligible CPU time

Results show good improvement of the barrier performance especially in the mid-frequency range

Results show good improvement of the barrier performance especially in the mid-frequency range

CSTB

In summary, admittance optimization allows to design lowheight noise barriers surface treatment efficiently

$$\frac{\mathrm{d}P}{\mathrm{d}\beta}(\beta) = \frac{\partial \mathcal{L}}{\partial \beta}(\beta, p_{\Gamma}, q_{\Gamma}) = ik \, p_{\Gamma} \, q_{\Gamma}$$

Adjoint state

- → Sensitivity (gradient) w.r.t. admittance parameters
- → Negligible extra CPU time

Gradient-based optimization algorithm

- Ex: MPP and porous layers
- Optimization gain of 6 dB(A)

CSTE

Porous materials

- → Baseline absorption
- Prevent reverberant build-up

<u>MPP</u>

Automatic tuning with optimization
 Further increase attenuation at mid-frequencies

BACKUP SLIDES

The gradients involved are complex functional gradients defined on the barrier

Curve **Γ**

<u>Notation</u> $\langle a,b
angle = \int_{\Gamma} ab\,\mathrm{d}\Gamma$

D : set of smooth complex functions defined on Γ F functional on D Linear approximation of F about f: $(\forall g \in D) \quad F(f+g) = F(f) + L_f(g) + o(||g||_{\infty})$

 $\frac{\mathrm{d}|F|^2}{\mathrm{d}f} = 2 F^* \frac{\mathrm{d}F}{\mathrm{d}f} \quad \text{and} \quad \frac{\mathrm{d}|F|}{\mathrm{d}f} = \frac{F^*}{|F|} \frac{\mathrm{d}F}{\mathrm{d}f}$

 L_f : linear form on D (differential)

Identification with a complex function

$$L_f(g) = \left\langle \frac{\mathrm{d}F}{\mathrm{d}f}, g \right\rangle$$

"Gradient" of F

If F is real

$$L_f(g) = \operatorname{Re}\left\langle \frac{\mathrm{d}F}{\mathrm{d}f}, g \right\rangle$$

Properties

The sound field resolution comes down to the determination of the pressure on the scatterer (the <u>state</u>)

G: Green's function <---- (Rigid) ground reflection + coherent line source (2D)

 $G(x_1, x_2, y_1, y_2) = \frac{i}{4} \left(H_0 \left[k \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2} \right] + H_0 \left[k \sqrt{(y_1 - x_1)^2 + (y_2 + x_2)^2} \right] \right)$

Given a pressure distribution p on Γ, define:

$$Sp : x \mapsto \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) p(\mathbf{y}) \, \mathrm{d}\Gamma(\mathbf{y})$$
$$Dp : x \mapsto \int_{\Gamma} \frac{\partial G}{\partial n_2}(\mathbf{x}, \mathbf{y}) p(\mathbf{y}) \, \mathrm{d}\Gamma(\mathbf{y})$$
$$D^*p : x \mapsto \int_{\Gamma} \frac{\partial G}{\partial n_1}(\mathbf{x}, \mathbf{y}) p(\mathbf{y}) \, \mathrm{d}\Gamma(\mathbf{y})$$
$$Np : x \mapsto \int_{\Gamma} \frac{\partial^2 G}{\partial n_1 \, \partial n_2}(\mathbf{x}, \mathbf{y}) p(\mathbf{y}) \, \mathrm{d}\Gamma(\mathbf{y})$$

Incident and scattered field

 $p = p^{\text{in}} + p^{\text{sc}}$ $p^{\text{in}}(\mathbf{x}) = G(S, \mathbf{x})$

Integral representation (Kirchhoff-Helmhotz integral theorem) **Adjoint properties**

$$\langle Sp,q \rangle = \langle Sq,p \rangle$$
$$\langle Dp,q \rangle = \langle D^*q,p \rangle$$
$$\langle Np,q \rangle = \langle Nq,p \rangle$$

Scattering problem

$$\begin{cases} -\left(\nabla^2 + k^2\right)p^{\rm sc} = 0 \text{ in } \Omega^e \\ \frac{\partial p^{\rm sc}}{\partial n} + \mathrm{i}k\,\beta\,p^{\rm sc} = h_1^{\rm in}(\beta) \text{ on } \Gamma \qquad \text{with } h_1^{\rm in}(\beta) = -\frac{\partial p^{\rm in}}{\partial n}\Big|_{\Gamma} - \mathrm{i}k\beta\,p^{\rm in}|_{\Gamma} \\ + \text{ radiation condition} \end{cases}$$

$$p^{\rm sc}(R_i) = \int_{\Gamma} \left(\frac{\partial G}{\partial n_2}(R_i, \mathbf{y}) + ik\beta(\mathbf{y}) G(R_i, \mathbf{y}) \right) p_{\Gamma}(\mathbf{y}) \, \mathrm{d}\mathbf{y}$$

The objective function depends on the admittance and the shape both explicitly and implicitly

* <u>Source:</u> P. Jean, "A variational approach for the study of outdoor sound propagation and application to railway noise,"
 J. Sound Vib. **212** (2), 275-294 (1998).

CSTE

The adjoint state is introduced to avoid dealing with the implicit dependence of the state on the parameters

Define the Lagrangian $\mathcal{L}(\hat{\beta}, \hat{p}_{\Gamma}, \hat{q}_{\Gamma}) = P(\hat{\beta}, \hat{p}_{\Gamma}) + Q(\hat{\beta}, \hat{p}_{\Gamma}, \hat{q}_{\Gamma})$

 $Q(\hat{\beta}, \hat{p}_{\Gamma}, \hat{q}_{\Gamma}) = \operatorname{Re}\left\langle N\hat{p}_{\Gamma} + D^{*}(\mathrm{i}k\hat{\beta}\hat{p}_{\Gamma}) + \mathrm{i}k\hat{\beta}\,D\hat{p}_{\Gamma} + \mathrm{i}k\hat{\beta}\,S(\mathrm{i}k\hat{\beta}\hat{p}_{\Gamma}) - h_{1}^{\mathrm{in}}(\hat{\beta}), \hat{q}_{\Gamma}\right\rangle$

$$\begin{aligned} \text{Adjoint state equation} \quad & \frac{\partial \mathcal{L}}{\partial p_{\Gamma}}(\beta, p_{\Gamma}, q_{\Gamma}) = 0 \quad \rightarrow \quad \underline{\text{dual BEM problem}} \\ \hline Nq_{\Gamma} + D^{*}(ik\beta q_{\Gamma}) + ik\beta \ Dq_{\Gamma} + ik\beta \ S(ik\beta q_{\Gamma}) = h_{2}^{\text{in}}(\beta, p_{\Gamma}) \\ h_{2}^{\text{in}}(\beta, p_{\Gamma}) = -\sum_{i} \frac{p(R_{i})^{*}}{P} \left(\frac{\partial G}{\partial n_{2}}(R_{i}, .) + ik\beta \ G(R_{i}, .) \right) \\ \hline \text{Total gradient} \quad & \frac{\mathrm{d}P}{\mathrm{d}\beta}(\beta, p_{\Gamma}) = \frac{\partial \mathcal{L}}{\partial\beta}(\beta, p_{\Gamma}, q_{\Gamma}) \quad \rightarrow \quad \text{Explicit function} \end{aligned}$$

The adjoint state is in fact the "state" of a dual scattering problem and can be solved by the BEM as well

→ 2 classical BEM integral equations: same operator, different RHS

Results show good improvement of the barrier performance especially in the mid-frequency range

Results show good improvement of the barrier performance especially in the mid-frequency range

Both surface treatments enhance attenuation in different frequency bands

One can also assess the accuracy of the approximations used in the optimization model

Different cases involving more realistic situations have been considered for comparison

<u>Absorbing ground</u> : Delany & Bazley layer – σ = 50 kPa s/m² , d = 10 cm

The benefit of the barrier is decreased when more realistic conditions are considered, but still significant

The benefit of the barrier is decreased when more realistic conditions are considered, but still significant

The benefit of the barrier is decreased when more realistic conditions are considered, but still significant

